
Mastering Laravel 12.x - A
Comprehensive Guide

This book is your comprehensive guide to mastering Laravel, the popular PHP framework for web artisans. It

covers everything from basic setup to advanced concepts, providing in-depth knowledge for developers of all

levels.

1

Table of Contents

Prologue

Release Notes

Upgrade Guide

Contribution Guide

Getting Started

Installation

Configuration

Directory Structure

Frontend

Starter Kits

Deployment

Architecture Concepts

Request Lifecycle

Service Container

Service Providers

Facades

The Basics

Routing

Middleware

CSRF Protection

Controllers

Requests

Responses

Views

Blade Templates

Asset Bundling

URL Generation

Session

Validation

Error Handling

Logging

Digging Deeper

Artisan Console

Broadcasting

Cache

Collections

Concurrency

Context

Contracts

Events

File Storage

Helpers

2

https://laravel.com/docs/12.x/releases
https://laravel.com/docs/12.x/upgrade
https://laravel.com/docs/12.x/contributions
https://laravel.com/docs/12.x/installation
https://laravel.com/docs/12.x/configuration
https://laravel.com/docs/12.x/structure
https://laravel.com/docs/12.x/frontend
https://laravel.com/docs/12.x/starter-kits
https://laravel.com/docs/12.x/deployment
https://laravel.com/docs/12.x/lifecycle
https://laravel.com/docs/12.x/container
https://laravel.com/docs/12.x/providers
https://laravel.com/docs/12.x/facades
https://laravel.com/docs/12.x/routing
https://laravel.com/docs/12.x/middleware
https://laravel.com/docs/12.x/csrf
https://laravel.com/docs/12.x/controllers
https://laravel.com/docs/12.x/requests
https://laravel.com/docs/12.x/responses
https://laravel.com/docs/12.x/views
https://laravel.com/docs/12.x/blade
https://laravel.com/docs/12.x/vite
https://laravel.com/docs/12.x/urls
https://laravel.com/docs/12.x/session
https://laravel.com/docs/12.x/validation
https://laravel.com/docs/12.x/errors
https://laravel.com/docs/12.x/logging
https://laravel.com/docs/12.x/artisan
https://laravel.com/docs/12.x/broadcasting
https://laravel.com/docs/12.x/cache
https://laravel.com/docs/12.x/collections
https://laravel.com/docs/12.x/concurrency
https://laravel.com/docs/12.x/context
https://laravel.com/docs/12.x/contracts
https://laravel.com/docs/12.x/events
https://laravel.com/docs/12.x/filesystem
https://laravel.com/docs/12.x/helpers

HTTP Client

Localization

Mail

Notifications

Package Development

Processes

Queues

Rate Limiting

Strings

Task Scheduling

Security

Authentication

Authorization

Email Verification

Encryption

Hashing

Password Reset

Database

Getting Started

Query Builder

Pagination

Migrations

Seeding

Redis

MongoDB

Eloquent ORM

Getting Started

Relationships

Collections

Mutators / Casts

API Resources

Serialization

Factories

Testing

Getting Started

HTTP Tests

Console Tests

Browser Tests

Database

Mocking

Packages

Cashier (Stripe)

Cashier (Paddle)

Dusk

Envoy

Fortify

3

https://laravel.com/docs/12.x/http-client
https://laravel.com/docs/12.x/localization
https://laravel.com/docs/12.x/mail
https://laravel.com/docs/12.x/notifications
https://laravel.com/docs/12.x/packages
https://laravel.com/docs/12.x/processes
https://laravel.com/docs/12.x/queues
https://laravel.com/docs/12.x/rate-limiting
https://laravel.com/docs/12.x/strings
https://laravel.com/docs/12.x/scheduling
https://laravel.com/docs/12.x/authentication
https://laravel.com/docs/12.x/authorization
https://laravel.com/docs/12.x/verification
https://laravel.com/docs/12.x/encryption
https://laravel.com/docs/12.x/hashing
https://laravel.com/docs/12.x/passwords
https://laravel.com/docs/12.x/database
https://laravel.com/docs/12.x/queries
https://laravel.com/docs/12.x/pagination
https://laravel.com/docs/12.x/migrations
https://laravel.com/docs/12.x/seeding
https://laravel.com/docs/12.x/redis
https://laravel.com/docs/12.x/mongodb
https://laravel.com/docs/12.x/eloquent
https://laravel.com/docs/12.x/eloquent-relationships
https://laravel.com/docs/12.x/eloquent-collections
https://laravel.com/docs/12.x/eloquent-mutators
https://laravel.com/docs/12.x/eloquent-resources
https://laravel.com/docs/12.x/eloquent-serialization
https://laravel.com/docs/12.x/eloquent-factories
https://laravel.com/docs/12.x/testing
https://laravel.com/docs/12.x/http-tests
https://laravel.com/docs/12.x/console-tests
https://laravel.com/docs/12.x/dusk
https://laravel.com/docs/12.x/database-testing
https://laravel.com/docs/12.x/mocking
https://laravel.com/docs/12.x/billing
https://laravel.com/docs/12.x/cashier-paddle
https://laravel.com/docs/12.x/dusk
https://laravel.com/docs/12.x/envoy
https://laravel.com/docs/12.x/fortify

Folio

Homestead

Horizon

Mix

Octane

Passport

Pennant

Pint

Precognition

Prompts

Pulse

Reverb

Sail

Sanctum

Scout

Socialite

Telescope

Valet

4

https://laravel.com/docs/12.x/folio
https://laravel.com/docs/12.x/homestead
https://laravel.com/docs/12.x/horizon
https://laravel.com/docs/12.x/mix
https://laravel.com/docs/12.x/octane
https://laravel.com/docs/12.x/passport
https://laravel.com/docs/12.x/pennant
https://laravel.com/docs/12.x/pint
https://laravel.com/docs/12.x/precognition
https://laravel.com/docs/12.x/prompts
https://laravel.com/docs/12.x/pulse
https://laravel.com/docs/12.x/reverb
https://laravel.com/docs/12.x/sail
https://laravel.com/docs/12.x/sanctum
https://laravel.com/docs/12.x/scout
https://laravel.com/docs/12.x/socialite
https://laravel.com/docs/12.x/telescope
https://laravel.com/docs/12.x/valet

Release Notes

Versioning Scheme

Laravel and its other first-party packages follow Semantic Versioning. Major framework releases are released

every year (~Q1), while minor and patch releases may be released as often as every week. Minor and patch

releases should never contain breaking changes.

When referencing the Laravel framework or its components from your application or package, you should

always use a version constraint such as ^12.0 , since major releases of Laravel do include breaking changes.

However, we strive to always ensure you may update to a new major release in one day or less.

Named Arguments

Named arguments are not covered by Laravel's backwards compatibility guidelines. We may choose to rename

function arguments when necessary in order to improve the Laravel codebase. Therefore, using named

arguments when calling Laravel methods should be done cautiously and with the understanding that the

parameter names may change in the future.

Support Policy

For all Laravel releases, bug fixes are provided for 18 months and security fixes are provided for 2 years. For all

additional libraries, only the latest major release receives bug fixes. In addition, please review the database

versions supported by Laravel.

Version PHP (*) Release Bug Fixes Until Security Fixes Until

10 8.1 - 8.3 February 14th, 2023 August 6th, 2024 February 4th, 2025

11 8.2 - 8.4 March 12th, 2024 September 3rd, 2025 March 12th, 2026

12 8.2 - 8.4 February 24th, 2025 August 13th, 2026 February 24th, 2027

13 8.3 - 8.4 Q1 2026 Q3 2027 Q1 2028

(*) Supported PHP versions

End of life and Security fixes only periods are indicated in the table.

Laravel 12

Laravel 12 continues the improvements made in Laravel 11.x by updating upstream dependencies and

introducing new starter kits for React, Vue, and Livewire, including the option of using WorkOS AuthKit for

user authentication. The WorkOS variant of our starter kits offers social authentication, passkeys, and SSO

support.

Minimal Breaking Changes

Much of our focus during this release cycle has been minimizing breaking changes. Instead, we have

dedicated ourselves to shipping continuous quality-of-life improvements throughout the year that do not break

existing applications.

Therefore, the Laravel 12 release is a relatively minor "maintenance release" in order to upgrade existing

dependencies. Most Laravel applications may upgrade to Laravel 12 without changing any application code.

5

https://semver.org/
https://www.php.net/manual/en/functions.arguments.php#functions.named-arguments
https://laravel.com/docs/12.x/database#introduction
https://authkit.com/

New Application Starter Kits

Laravel 12 introduces new starter kits for React, Vue, and Livewire. The React and Vue starter kits utilize

Inertia 2, TypeScript, shadcn/ui, and Tailwind, while the Livewire starter kits utilize the Tailwind-based Flux

UI component library and Laravel Volt.

All these starter kits utilize Laravel's built-in authentication system to offer login, registration, password reset,

email verification, and more. Additionally, we are introducing a WorkOS AuthKit-powered variant of each

starter kit, offering social authentication, passkeys, and SSO support. WorkOS provides free authentication for

applications up to 1 million monthly active users.

With the introduction of these new application starter kits, Laravel Breeze and Laravel Jetstream will no

longer receive additional updates.

To get started with our new starter kits, see the starter kit documentation.

6

https://laravel.com/docs/12.x/starter-kits
https://ui.shadcn.com/
https://fluxui.dev/
https://fluxui.dev/
https://authkit.com/
https://laravel.com/docs/12.x/starter-kits

Upgrade Guide

Upgrading To 12.0 From 11.x

Back to top

High Impact Changes

Updating Dependencies

Updating the Laravel Installer

Medium Impact Changes

Models and UUIDv7

Low Impact Changes

Carbon 3

Concurrency Result Index Mapping

Container Class Dependency Resolution

Image Validation Now Excludes SVGs

Multi-Schema Database Inspecting

Nested Array Request Merging

Upgrading To 12.0 From 11.x

Estimated Upgrade Time: 5 Minutes

We attempt to document every possible breaking change. Since some of these breaking changes are in obscure

parts of the framework, only a portion may actually affect your application. Want to save time? You can use

Laravel Shift to help automate your application upgrades.

Updating Dependencies

Likelihood Of Impact: High

You should update the following dependencies in your application's composer.json file:

laravel/framework to ^12.0

phpunit/phpunit to ^11.0

pestphp/pest to ^3.0

Carbon 3

Likelihood Of Impact: Low

Support for Carbon 2.x has been removed. All Laravel 12 applications now require Carbon 3.x.

Updating the Laravel Installer

7

https://laravelshift.com/
https://carbon.nesbot.com/docs/
https://carbon.nesbot.com/docs/#api-carbon-3

If you're using the Laravel installer CLI tool to create new Laravel applications, update it to be compatible with

Laravel 12.x and the new Laravel starter kits. If installed via composer global require , update with:

composer global update laravel/installer

If you installed PHP and Laravel via php.new , re-run the installer commands for your OS:

macOS

/bin/bash -c "$(curl -fsSL https://php.new/install/mac/8.4)"

Windows PowerShell

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::Se

Linux

/bin/bash -c "$(curl -fsSL https://php.new/install/linux/8.4)"

Or, if using Laravel Herd, update your Herd installation to the latest release.

Authentication

Updated DatabaseTokenRepository Constructor Signature

Likelihood Of Impact: Very Low

The constructor of Illuminate\Auth\Passwords\DatabaseTokenRepository now expects

$expires in seconds, not minutes.

Concurrency

Concurrency Result Index Mapping

Likelihood Of Impact: Low

When using Concurrency::run with an associative array, results are now returned with their keys:

$result = Concurrency::run([

 'task-1' => fn () => 1 + 1,

 'task-2' => fn () => 2 + 2,

]);

// Results:

[

 'task-1' => 2,

 'task-2' => 4,

]

Container

Container Class Dependency Resolution

Likelihood Of Impact: Low

The container respects default property values when resolving classes. If previously relying on container to

resolve classes without defaults, adjust accordingly:

8

https://laravel.com/starter-kits
https://herd.laravel.com/

class Example

{

 public function __construct(public ?Carbon $date = null) {}

}

$example = resolve(Example::class);

// <= 11.x

$example->date instanceof Carbon;

// >= 12.x

$example->date === null;

Database

Multi-Schema Database Inspecting

Likelihood Of Impact: Low

Methods like Schema::getTables() , Schema::getViews() , and Schema::getTypes() include

all schemas by default. You can specify schema:

// All schemas

$tables = Schema::getTables();

// Specific schema

$tables = Schema::getTables(schema: 'main');

// Multiple schemas

$tables = Schema::getTables(schema: ['main', 'blog']);

Schema::getTableListing() now returns schema-qualified names by default. Use

schemaQualified parameter to change:

$tables = Schema::getTableListing(); // ['main.migrations', 'main.users', 'blog.posts'

$tables = Schema::getTableListing(schema: 'main'); // ['main.migrations', 'main.users'

$tables = Schema::getTableListing(schema: 'main', schemaQualified: false); // ['migrat

Commands like db:table and db:show now show results across all schemas on MySQL, MariaDB, and

SQLite.

Updated Blueprint Constructor Signature

Likelihood Of Impact: Very Low

Illuminate\Database\Schema\Blueprint constructor now expects an instance of

Illuminate\Database\Connection as first argument.

Eloquent

Models and UUIDv7

Likelihood Of Impact: Medium

The HasUuids trait now generates UUIDs compatible with version 7 (ordered UUIDs). To use ordered

UUIDv4, use HasVersion4Uuids instead:

9

use Illuminate\Database\Eloquent\Concerns\HasUuids;

// Previous

use Illuminate\Database\Eloquent\Concerns\HasUuids;

// New for UUIDv4

use Illuminate\Database\Eloquent\Concerns\HasVersion4Uuids as HasUuids;

HasVersion7Uuids trait has been removed; use HasUuids for same behavior.

Requests

Nested Array Request Merging

Likelihood Of Impact: Low

$request->mergeIfMissing() now supports merging nested arrays with "dot" notation:

$request->mergeIfMissing([

 'user.last_name' => 'Otwell',

]);

Validation

Image Validation Now Excludes SVGs

The image rule no longer accepts SVGs by default. To permit SVGs:

use Illuminate\Validation\Rules\File;

'photo' => 'required|image:allow_svg'

// Or...

'photo' => ['required', File::image(allowSvg: true)],

Miscellaneous

Review changes in the laravel/laravel GitHub repo. Many updates are optional but recommended for sync. Use

the GitHub comparison tool to identify relevant updates.

10

https://github.com/laravel/laravel
https://github.com/laravel/laravel/compare/11.x...12.x

Contribution Guide

Table of Contents

Bug Reports

Support Questions

Core Development Discussion

Which Branch?

Compiled Assets

Security Vulnerabilities

Coding Style

PHPDoc

StyleCI

Code of Conduct

Bug Reports

To encourage active collaboration, Laravel strongly encourages pull requests, not just bug reports. Pull

requests will only be reviewed when marked as "ready for review" (not in the "draft" state) and all tests for new

features are passing. Lingering, non-active pull requests left in the "draft" state will be closed after a few days.

However, if you file a bug report, your issue should contain a title and a clear description of the issue. You

should also include as much relevant information as possible and a code sample that demonstrates the issue.

The goal of a bug report is to make it easy for yourself - and others - to replicate the bug and develop a fix.

Remember, bug reports are created in the hope that others with the same problem will be able to collaborate

with you on solving it. Do not expect that the bug report will automatically see any activity or that others will

jump to fix it. Creating a bug report serves to help yourself and others start on the path of fixing the problem.

If you want to chip in, you can help out by fixing any bugs listed in our issue trackers. You must be

authenticated with GitHub to view all of Laravel's issues.

If you notice improper DocBlock, PHPStan, or IDE warnings while using Laravel, do not create a GitHub issue.

Instead, please submit a pull request to fix the problem.

The Laravel source code is managed on GitHub, and there are repositories for each of the Laravel projects:

Laravel Application

Laravel Art

Laravel Documentation

Laravel Dusk

Laravel Cashier Stripe

Laravel Cashier Paddle

Laravel Echo

Laravel Envoy

Laravel Folio

Laravel Framework

Laravel Homestead (Build Scripts)

Laravel Horizon

Laravel Livewire Starter Kit

Laravel Passport

Laravel Pennant

Laravel Pint

Laravel Prompts

Laravel React Starter Kit

11

https://github.com/issues?q=is%3Aopen+is%3Aissue+label%3Abug+user%3Alaravel
https://github.com/laravel/laravel
https://github.com/laravel/art
https://github.com/laravel/docs
https://github.com/laravel/dusk
https://github.com/laravel/cashier
https://github.com/laravel/cashier-paddle
https://github.com/laravel/echo
https://github.com/laravel/envoy
https://github.com/laravel/folio
https://github.com/laravel/framework
https://github.com/laravel/homestead
https://github.com/laravel/settler
https://github.com/laravel/horizon
https://github.com/laravel/livewire-starter-kit
https://github.com/laravel/passport
https://github.com/laravel/pennant
https://github.com/laravel/pint
https://github.com/laravel/prompts
https://github.com/laravel/react-starter-kit

Laravel Reverb

Laravel Sail

Laravel Sanctum

Laravel Scout

Laravel Socialite

Laravel Telescope

Laravel Vue Starter Kit

Support Questions

Laravel's GitHub issue trackers are not intended to provide Laravel help or support. Instead, use one of the

following channels:

GitHub Discussions

Laracasts Forums

Laravel.io Forums

StackOverflow

Discord

Larachat

IRC

Core Development Discussion

You may propose new features or improvements of existing Laravel behavior in the Laravel framework

repository's GitHub discussion board. If you propose a new feature, please be willing to implement at least

some of the code that would be needed to complete the feature.

Informal discussion regarding bugs, new features, and implementation of existing features takes place in the

#internals channel of the Laravel Discord server. Taylor Otwell, the maintainer of Laravel, is typically

present in the channel on weekdays from 8am-5pm (UTC-06:00 or America/Chicago), and sporadically present

in the channel at other times.

Which Branch?

All bug fixes should be sent to the latest version that supports bug fixes (currently 12.x). Bug fixes

should never be sent to the master branch unless they fix features that exist only in the upcoming

release.

Minor features that are fully backward compatible with the current release may be sent to the latest

stable branch (currently 12.x).

Major new features or features with breaking changes should always be sent to the master branch,

which contains the upcoming release.

Compiled Assets

If you are submitting a change that will affect a compiled file, such as most of the files in resources/css

or resources/js of the laravel/laravel repository, do not commit the compiled files. Due to their

large size, they cannot realistically be reviewed by a maintainer. This could be exploited as a way to inject

malicious code into Laravel. In order to defensively prevent this, all compiled files will be generated and

committed by Laravel maintainers.

Security Vulnerabilities

12

https://github.com/laravel/reverb
https://github.com/laravel/sail
https://github.com/laravel/sanctum
https://github.com/laravel/scout
https://github.com/laravel/socialite
https://github.com/laravel/telescope
https://github.com/laravel/vue-starter-kit
https://github.com/laravel/framework/discussions
https://laracasts.com/discuss
https://laravel.io/forum
https://stackoverflow.com/questions/tagged/laravel
https://discord.gg/laravel
https://larachat.co/
https://web.libera.chat/?nick=artisan&channels=#laravel
https://github.com/laravel/framework/discussions
https://discord.gg/laravel

If you discover a security vulnerability within Laravel, please send an email to Taylor Otwell at

 . All security vulnerabilities will be promptly addressed.

Coding Style

Laravel follows the PSR-2 coding standard and the PSR-4 autoloading standard.

PHPDoc

Below is an example of a valid Laravel documentation block. Note that the @param attribute is followed by

two spaces, the argument type, two more spaces, and finally the variable name:

/**

 * Register a binding with the container.

 *

 * @param string|array $abstract

 * @param \Closure|string|null $concrete

 * @param bool $shared

 * @return void

 *

 * @throws \Exception

 */

public function bind($abstract, $concrete = null, $shared = false)

{

 // ...

}

When the @param or @return attributes are redundant due to the use of native types, they can be

removed:

/**

 * Execute the job.

 */

public function handle(AudioProcessor $processor): void

{

 //

}

However, when the native type is generic, please specify the generic type through the use of the @param or

@return attributes:

/**

 * Get the attachments for the message.

 *

 * @return array<int, \Illuminate\Mail\Mailables\Attachment>

 */

public function attachments(): array

{

 return [

 Attachment::fromStorage('/path/to/file'),

];

}

StyleCI

13

mailto:%5Bemail%C2%A0protected%5D
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

Don't worry if your code styling isn't perfect! StyleCI will automatically merge any style fixes into the Laravel

repository after pull requests are merged. This allows us to focus on the content of the contribution and not

the code style.

Code of Conduct

The Laravel code of conduct is derived from the Ruby code of conduct. Any violations of the code of conduct

may be reported to Taylor Otwell (email protected).

Participants will be tolerant of opposing views.

Participants must ensure that their language and actions are free of personal attacks and disparaging personal

remarks.

When interpreting the words and actions of others, participants should always assume good intentions.

Behavior that can be reasonably considered harassment will not be tolerated.

14

https://styleci.io/
mailto:%5Bemail%C2%A0protected%5D

Installation - Laravel 12.x - The PHP
Framework For Web Artisans

Main Content

 Home

 <div>

 <div>

 <div></div>

 </div>

 ⌘K

 </div>

 <div>

15

https://laravel.com/
https://laravel.com/

 <div>

 <div>

 </div>

Prologue

Release Notes

Upgrade Guide

Contribution Guide

Getting Started

Installation

Configuration

Directory Structure

Frontend

Starter Kits

Deployment

Architecture Concepts

Request Lifecycle

Service Container

Service Providers

16

https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/
https://laravel.com/

Facades

The Basics

Routing

Middleware

CSRF Protection

Controllers

Requests

Responses

Views

Blade Templates

Asset Bundling

URL Generation

Session

Validation

Error Handling

Logging

Digging Deeper

Artisan Console

Broadcasting

Cache

Collections

Concurrency

Context

Contracts

Events

File Storage

Helpers

HTTP Client

Localization

Mail

Notifications

Package Development

Processes

Queues

Rate Limiting

Strings

Task Scheduling

Security

Authentication

Authorization

Email Verification

Encryption

Hashing

Password Reset

17

Database

Getting Started

Query Builder

Pagination

Migrations

Seeding

Redis

MongoDB

Eloquent ORM

Getting Started

Relationships

Collections

Mutators / Casts

API Resources

Serialization

Factories

Testing

Getting Started

HTTP Tests

Console Tests

Browser Tests

Database

Mocking

Packages

Cashier (Stripe)

Cashier (Paddle)

Dusk

Envoy

Fortify

Folio

Homestead

Horizon

Mix

Octane

Passport

Pennant

Pint

Precognition

Prompts

Pulse

18

Reverb

Sail

Sanctum

Scout

Socialite

Telescope

Valet

API Documentation

</div>

 <div>

Skip to content

 <div>

<aside>

 <div>

 <div>

 <nav>

 <div>

Prologue

Release Notes

Upgrade Guide

Contribution Guide

Getting Started

Installation

Configuration

Directory Structure

Frontend

Starter Kits

Deployment

Architecture Concepts

Request Lifecycle

Service Container

Service Providers

Facades

The Basics

Routing

19

https://api.laravel.com/docs/12.x

Middleware

CSRF Protection

Controllers

Requests

Responses

Views

Blade Templates

Asset Bundling

URL Generation

Session

Validation

Error Handling

Logging

Digging Deeper

Artisan Console

Broadcasting

Cache

Collections

Concurrency

Context

Contracts

Events

File Storage

Helpers

HTTP Client

Localization

Mail

Notifications

Package Development

Processes

Queues

Rate Limiting

Strings

Task Scheduling

Security

Authentication

Authorization

Email Verification

Encryption

Hashing

Password Reset

Database

Getting Started

Query Builder

Pagination

20

Migrations

Seeding

Redis

MongoDB

Eloquent ORM

Getting Started

Relationships

Collections

Mutators / Casts

API Resources

Serialization

Factories

Testing

Getting Started

HTTP Tests

Console Tests

Browser Tests

Database

Mocking

Packages

Cashier (Stripe)

Cashier (Paddle)

Dusk

Envoy

Fortify

Folio

Homestead

Horizon

Mix

Octane

Passport

Pennant

Pint

Precognition

Prompts

Pulse

Reverb

Sail

Sanctum

Scout

Socialite

Telescope

Valet

API Documentation

21

https://api.laravel.com/docs/12.x

 </div>

 </nav>

 </div>

 </div>

 </aside>

 <section>

 <div>

 <section>

 <section>

 <div>

<h1>Installation</h1>

Meet Laravel

Why Laravel?

Creating a Laravel Application

Installing PHP and the Laravel Installer

Creating an Application

Initial Configuration

Environment Based Configuration

Databases and Migrations

Directory Configuration

Installation Using Herd

Herd on macOS

Herd on Windows

IDE Support

Next Steps

Laravel the Full Stack Framework

Laravel the API Backend

Meet Laravel

Laravel is a web application framework with expressive, elegant syntax. A web framework provides a structure

and starting point for creating your application, allowing you to focus on creating something amazing while

we sweat the details.

Laravel strives to provide an amazing developer experience while providing powerful features such as

thorough dependency injection, an expressive database abstraction layer, queues and scheduled jobs, unit and

integration testing, and more.

Whether you are new to PHP web frameworks or have years of experience, Laravel is a framework that can

grow with you. We'll help you take your first steps as a web developer or give you a boost as you take your

expertise to the next level. We can't wait to see what you build.

Why Laravel?

There are a variety of tools and frameworks available to you when building a web application. However, we

believe Laravel is the best choice for building modern, full-stack web applications.

A Progressive Framework

We like to call Laravel a "progressive" framework. By that, we mean that Laravel grows with you. If you're just

taking your first steps into web development, Laravel's vast library of documentation, guides, and video

tutorials will help you learn the ropes without becoming overwhelmed.

22

https://laracasts.com/
https://laracasts.com/

If you're a senior developer, Laravel gives you robust tools for dependency injection, unit testing, queues, real-

time events, and more. Laravel is fine-tuned for building professional web applications and ready to handle

enterprise work loads.

A Scalable Framework

Laravel is incredibly scalable. Thanks to the scaling-friendly nature of PHP and Laravel's built-in support for

fast, distributed cache systems like Redis, horizontal scaling with Laravel is a breeze. In fact, Laravel

applications have been easily scaled to handle hundreds of millions of requests per month.

Need extreme scaling? Platforms like Laravel Cloud allow you to run your Laravel application at nearly

limitless scale.

A Community Framework

Laravel combines the best packages in the PHP ecosystem to offer the most robust and developer friendly

framework available. In addition, thousands of talented developers from around the world have contributed to

the framework. Who knows, maybe you'll even become a Laravel contributor.

Creating a Laravel Application

Installing PHP and the Laravel Installer

Before creating your first Laravel application, make sure that your local machine has PHP, Composer, and the

Laravel installer installed. In addition, you should install either Node and NPM or Bun so that you can compile

your application's frontend assets.

If you don't have PHP and Composer installed on your local machine, the following commands will install

PHP, Composer, and the Laravel installer on macOS, Windows, or Linux:

macOS Windows PowerShell Linux

1/bin/bash -c "$(curl -fsSL https://php.new/install/mac/8.4)"

/bin/bash -c "$(curl -fsSL https://php.new/install/mac/8.4)"

1# Run as administrator...

2Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::

Run as administrator...

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::Se

1/bin/bash -c "$(curl -fsSL https://php.new/install/linux/8.4)"

/bin/bash -c "$(curl -fsSL https://php.new/install/linux/8.4)"

After running one of the commands above, you should restart your terminal session. To update PHP,

Composer, and the Laravel installer after installing them via php.new , you can re-run the command in your

terminal.

If you already have PHP and Composer installed, you may install the Laravel installer via Composer:

1composer global require laravel/installer

composer global require laravel/installer

</div>

<p>

For a fully-featured, graphical PHP installation and management experience, check out Laravel Herd.

23

https://cloud.laravel.com/
https://github.com/laravel/framework
https://github.com/laravel/framework
https://php.net/
https://getcomposer.org/
https://github.com/laravel/installer
https://github.com/laravel/installer
https://nodejs.org/
https://bun.sh/

Creating an Application

After you have installed PHP, Composer, and the Laravel installer, you're ready to create a new Laravel

application. The Laravel installer will prompt you to select your preferred testing framework, database, and

starter kit:

1laravel new example-app

laravel new example-app

Once the application has been created, you can start Laravel's local development server, queue worker, and

Vite development server using the dev Composer script:

1cd example-app

2npm install && npm run build

3composer run dev

cd example-app

npm install && npm run build

composer run dev

Once you have started the development server, your application will be accessible in your web browser at

http://localhost:8000. Next, you're ready to start taking your next steps into the Laravel

ecosystem. Of course, you may also want to configure a database.

</div>

<p>

If you would like a head start when developing your Laravel application, consider using one of our starter kits.

Laravel's starter kits provide backend and frontend authentication scaffolding for your new Laravel

application.

Initial Configuration

All of the configuration files for the Laravel framework are stored in the config directory. Each option is

documented, so feel free to look through the files and get familiar with the options available to you.

Laravel needs almost no additional configuration out of the box. You are free to get started developing!

However, you may wish to review the config/app.php file and its documentation. It contains several

options such as url and locale that you may wish to change according to your application.

Environment Based Configuration

Since many of Laravel's configuration option values may vary depending on whether your application is

running on your local machine or on a production web server, many important configuration values are

defined using the .env file that exists at the root of your application.

Your .env file should not be committed to your application's source control, since each developer / server

using your application could require a different environment configuration. Furthermore, this would be a

security risk in the event an intruder gains access to your source control repository, since any sensitive

credentials would be exposed.

</div>

<p>

For more information about the .env file and environment based configuration, check out the full

configuration documentation.

24

Databases and Migrations

Now that you have created your Laravel application, you probably want to store some data in a database. By

default, your application's .env configuration file specifies that Laravel will be interacting with an SQLite

database.

During the creation of the application, Laravel created a database/database.sqlite file for you, and

ran the necessary migrations to create the application's database tables.

If you prefer to use another database driver such as MySQL or PostgreSQL, you can update your .env

configuration file to use the appropriate database. For example, if you wish to use MySQL, update your .env

configuration file's DB_* variables like so:

1DB_CONNECTION=mysql

2DB_HOST=127.0.0.1

3DB_PORT=3306

4DB_DATABASE=laravel

5DB_USERNAME=root

6DB_PASSWORD=

DB_CONNECTION=mysql

DB_HOST=127.0.0.1

DB_PORT=3306

DB_DATABASE=laravel

DB_USERNAME=root

DB_PASSWORD=

If you choose to use a database other than SQLite, you will need to create the database and run your

application's database migrations:

1php artisan migrate

php artisan migrate

</div>

<p>

If you are developing on macOS or Windows and need to install MySQL, PostgreSQL, or Redis locally, consider

using Herd Pro or DBngin.

Directory Configuration

Laravel should always be served out of the root of the "web directory" configured for your web server. You

should not attempt to serve a Laravel application out of a subdirectory of the "web directory". Attempting to do

so could expose sensitive files present within your application.

Installation Using Herd

Laravel Herd is a blazing fast, native Laravel and PHP development environment for macOS and Windows.

Herd includes everything you need to get started with Laravel development, including PHP and Nginx.

Once you install Herd, you're ready to start developing with Laravel. Herd includes command line tools for

php , composer , laravel , expose , node , npm , and nvm .

</div>

<p>

25

https://herd.laravel.com/#plans
https://dbngin.com/
https://herd.laravel.com/

Herd Pro augments Herd with additional powerful features, such as the ability to create and manage local

MySQL, Postgres, and Redis databases, as well as local mail viewing and log monitoring.

Herd on macOS

If you develop on macOS, you can download the Herd installer from the Herd website. The installer

automatically downloads the latest version of PHP and configures your Mac to always run Nginx in the

background.

Herd for macOS uses dnsmasq to support "parked" directories. Any Laravel application in a parked directory

will automatically be served by Herd. By default, Herd creates a parked directory at ~/Herd and you can

access any Laravel application in this directory on the .test domain using its directory name.

After installing Herd, the fastest way to create a new Laravel application is using the Laravel CLI, which is

bundled with Herd:

1cd ~/Herd

2laravel new my-app

3cd my-app

4herd open

cd ~/Herd

laravel new my-app

cd my-app

herd open

Of course, you can always manage your parked directories and other PHP settings via Herd's UI, which can be

opened from the Herd menu in your system tray.

You can learn more about Herd by checking out the Herd documentation.

Herd on Windows

You can download the Windows installer for Herd on the Herd website. After the installation finishes, you can

start Herd to complete the onboarding process and access the Herd UI for the first time.

The Herd UI is accessible by left-clicking on Herd's system tray icon. A right-click opens the quick menu with

access to all tools that you need on a daily basis.

During installation, Herd creates a "parked" directory in your home directory at %USERPROFILE%\Herd .

Any Laravel application in a parked directory will automatically be served by Herd, and you can access any

Laravel application in this directory on the .test domain using its directory name.

After installing Herd, the fastest way to create a new Laravel application is using the Laravel CLI, which is

bundled with Herd. To get started, open Powershell and run the following commands:

1cd ~\Herd

2laravel new my-app

3cd my-app

4herd open

cd ~\Herd

laravel new my-app

cd my-app

herd open

You can learn more about Herd by checking out the Herd documentation for Windows.

26

https://herd.laravel.com/#plans
https://herd.laravel.com/
https://www.nginx.com/
https://en.wikipedia.org/wiki/Dnsmasq
https://herd.laravel.com/docs
https://herd.laravel.com/windows
https://herd.laravel.com/docs/windows

IDE Support

You are free to use any code editor you wish when developing Laravel applications; however, PhpStorm offers

extensive support for Laravel and its ecosystem, including Laravel Pint.

In addition, the community maintained Laravel Idea PhpStorm plugin offers a variety of helpful IDE

augmentations, including code generation, Eloquent syntax completion, validation rule completion, and

more.

If you develop in Visual Studio Code (VS Code), the official Laravel VS Code Extension is now available. This

extension brings Laravel-specific tools directly into your VS Code environment, enhancing productivity.

Next Steps

Now that you have created your Laravel application, you may be wondering what to learn next. First, we

strongly recommend becoming familiar with how Laravel works by reading the following documentation:

Request Lifecycle

Configuration

Directory Structure

Frontend

Service Container

Facades

How you want to use Laravel will also dictate the next steps on your journey. There are a variety of ways to use

Laravel, and we'll explore two primary use cases for the framework below.

Laravel the Full Stack Framework

Laravel may serve as a full stack framework. By "full stack" framework we mean that you are going to use

Laravel to route requests to your application and render your frontend via Blade templates or a single-page

application hybrid technology like Inertia. This is the most common way to use the Laravel framework, and, in

our opinion, the most productive way to use Laravel.

If this is how you plan to use Laravel, you may want to check out our documentation on frontend

development, routing, views, or the Eloquent ORM. In addition, you might be interested in learning about

community packages like Livewire and Inertia. These packages allow you to use Laravel as a full-stack

framework while enjoying many of the UI benefits provided by single-page JavaScript applications.

If you are using Laravel as a full stack framework, we also strongly encourage you to learn how to compile

your application's CSS and JavaScript using Vite.

</div>

<p>

If you want to get a head start building your application, check out one of our official application starter kits.

Laravel the API Backend

Laravel may also serve as an API backend to a JavaScript single-page application or mobile application. For

example, you might use Laravel as an API backend for your Next.js application. In this context, you may use

Laravel to provide authentication and data storage / retrieval for your application, while also taking advantage

of Laravel's powerful services such as queues, emails, notifications, and more.

If this is how you plan to use Laravel, you may want to check out our documentation on routing, Laravel

Sanctum, and the Eloquent ORM.

27

https://www.jetbrains.com/phpstorm/laravel/
https://www.jetbrains.com/help/phpstorm/using-laravel-pint.html
https://laravel-idea.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=laravel.vscode-laravel
https://inertiajs.com/
https://livewire.laravel.com/
https://inertiajs.com/
https://nextjs.org/

 <div>

 <div>

 <div>

<h3>

 On this page

</h3>

<div>

 <div>

 Meet Laravel

 Why Laravel?

 Creating a Laravel Application

 Installing PHP and the Laravel Installer

 Creating an Application

 Initial Configuration

 Environment Based Configuration

 Databases and Migrations

28

 Directory Configuration

 Installation Using Herd

 Herd on macOS

 Herd on Windows

 IDE Support

 Next Steps

 Laravel the Full Stack Framework

 Laravel the API Backend

 </div>

</div>

 </div>

 </div>

<div>

<div>

29

</div>

 </div>

 </div>

 <div>

<div>

 <div>

 <div>

 <p>Laravel is the most productive way to
 build, deploy, and monitor

 <div>

 © 2025 Laravel

 Legal

 Status

 </div>

 </div>

30

 <div>

<div>

<h4>

 Products

 </h4>

 Cloud

 Forge

 Nightwatc

 Vapor

 Nova

Packages

 Cashier

 Dusk

 Horizon

 Octane

 Scout

 Pennant

 Pint

 Sail

31

 Sanctum

 Socialite

 Telescope

 Pulse

 Reverb

 Echo

Resources

 Documentation

 Starter Kits

 Release Notes

 Blog

 News

 Larabelles

 Jobs

 Careers

 Trust

Partners

 <a href="https://partners.laravel.com/partners/red

 <a href="https://partners.laravel.com/partners/veh

32

 <a href="https://partners.laravel.com/partners/kir

 <a href="https://partners.laravel.com/partners/act

 <a href="https://partners.laravel.com/partners/cur

 <a href="https://partners.laravel.com/partners/dev

 <a href="https://partners.laravel.com/partners/tig

 <a href="https://partners.laravel.com/partners/64-

 More Partne

 <div>

</div>

 </div>

</div>

33

Configuration

Introduction

All of the configuration files for the Laravel framework are stored in the config directory. Each option is

documented, so feel free to look through the files and get familiar with the options available to you.

These configuration files allow you to configure things like your database connection information, your mail

server information, as well as various other core configuration values such as your application URL and

encryption key.

The about Command

Laravel can display an overview of your application's configuration, drivers, and environment via the about

Artisan command.

php artisan about

If you're only interested in a particular section of the application overview output, you may filter for that

section using the --only option:

php artisan about --only=environment

Or, to explore a specific configuration file's values in detail, you may use the config:show Artisan

command:

php artisan config:show database

Environment Configuration

It is often helpful to have different configuration values based on the environment where the application is

running. For example, you may wish to use a different cache driver locally than you do on your production

server.

To make this a cinch, Laravel utilizes the DotEnv PHP library. In a fresh Laravel installation, the root directory

of your application will contain a .env.example file that defines many common environment variables.

During the Laravel installation process, this file will automatically be copied to .env .

Laravel's default .env file contains some common configuration values that may differ based on whether

your application is running locally or on a production web server. These values are then read by the

configuration files within the config directory using Laravel's env function.

If you are developing with a team, you may wish to continue including and updating the .env.example file

with your application. By putting placeholder values in the example configuration file, other developers on

your team can clearly see which environment variables are needed to run your application.

Any variable in your .env file can be overridden by external environment variables such as server-level or

system-level environment variables.

Environment File Security

Your .env file should not be committed to your application's source control, since each developer / server

using your application could require a different environment configuration. Furthermore, this would be a

34

https://github.com/vlucas/phpdotenv

security risk if an intruder gains access to your source control repository, as any sensitive credentials would be

exposed.

However, it is possible to encrypt your environment file using Laravel's built-in environment encryption.

Encrypted environment files may be placed in source control safely.

Additional Environment Files

Before loading your application's environment variables, Laravel determines if an APP_ENV environment

variable has been externally provided or if the --env CLI argument has been specified. If so, Laravel will

attempt to load an .env.[APP_ENV] file if it exists. If it does not exist, the default .env file will be

loaded.

Environment Variable Types

All variables in your .env files are typically parsed as strings, so some reserved values have been created to

allow you to return a wider range of types from the env() function:

.env Value env() Return

true (bool) true

(true) (bool) true

false (bool) false

(false) (bool) false

empty (string) ''

(empty) (string) ''

null (null) null

(null) (null) null

If you need to define an environment variable with a value that contains spaces, enclose the value in double

quotes:

APP_NAME="My Application"

Retrieving Environment Configuration

All variables listed in the .env file are loaded into the $_ENV PHP super-global when your application

receives a request. You may use the env function to retrieve these values in your configuration files. Many of

Laravel s̓ configuration options use this function internally:

'default' => env('APP_DEBUG', false),

The second value is the default, returned if the environment variable does not exist.

Determining the Current Environment

The current application environment is determined via the APP_ENV variable from your .env file. You

can access this value via the environment method on the App facade:

use Illuminate\Support\Facades\App;

$environment = App::environment();

You can pass arguments to this method to check if the environment matches a given value:

35

if (App::environment('local')) {

 // The environment is local

}

if (App::environment(['local', 'staging'])) {

 // The environment is either local OR staging...

}

The environment detection can be overridden by defining a server-level APP_ENV variable.

Encrypting Environment Files

Unencrypted environment files should never be stored in source control. Laravel allows you to encrypt your

environment files so they can be safely added to source control.

Encryption

To encrypt an environment file, use:

php artisan env:encrypt

This encrypts .env and creates .env.encrypted . The decryption key is output and should be stored

securely. To specify your own key:

php artisan env:encrypt --key=your-custom-key

The key length must match the encryption cipher used. Default cipher is AES-256-CBC , requiring a 32-

character key. You can specify a cipher with --cipher .

For multiple environment files:

php artisan env:encrypt --env=staging

Decryption

To decrypt:

php artisan env:decrypt

Or specify a key:

php artisan env:decrypt --key=your-custom-key

You can specify the environment file with --env . To overwrite existing .env :

php artisan env:decrypt --force

Accessing Configuration Values

Access configuration values with the Config facade or config() helper:

use Illuminate\Support\Facades\Config;

$value = Config::get('app.timezone');

$value = config('app.timezone');

$value = config('app.timezone', 'Asia/Seoul'); // default value

Set values at runtime:

36

Config::set('app.timezone', 'America/Chicago');

config(['app.timezone' => 'America/Chicago']);

Config facade provides typed retrieval methods:

Config::string('config-key');

Config::integer('config-key');

Config::float('config-key');

Config::boolean('config-key');

Config::array('config-key');

Config::collection('config-key');

Configuration Caching

To improve performance, cache all configuration into a single file:

php artisan config:cache

Avoid running during local development. Once cached, the .env file is not loaded in requests; env()

returns external environment variables only.

Clear the cache with:

php artisan config:clear

Configuration Publishing

Laravel s̓ default configuration files are already published. To publish additional configuration files:

php artisan config:publish

With --all :

php artisan config:publish --all

Debug Mode

In config/app.php , the debug option determines error details shown. Defaults to the APP_DEBUG

environment variable.

Set APP_DEBUG=true during local development. In production, always set to false . Exposing debug info

in production entails security risks.

Maintenance Mode

Put your application in maintenance mode to display a custom view:

php artisan down

Options include:

--refresh=seconds to auto-refresh

--retry=seconds to set Retry-After header

--secret=<token> to allow bypass with secret token

--with-secret to generate a token

37

--render=<view> to pre-render the view

--redirect=<uri> to redirect all requests

Disable maintenance mode:

php artisan up

Maintenance Mode and Queues

While in maintenance mode, queued jobs are not processed. Once out of maintenance, jobs resume.

Alternatives to Maintenance Mode

For zero-downtime deployments, consider managed platforms like Laravel Cloud.

(Additional content like footer, social links, and extra pages follow in similar structured markdown.)

38

https://cloud.laravel.com/

Directory Structure

Introduction

The default Laravel application structure is intended to provide a great starting point for both large and small

applications. But you are free to organize your application however you like. Laravel imposes almost no

restrictions on where any given class is located - as long as Composer can autoload the class.

The Root Directory

The App Directory

The app directory contains the core code of your application. We'll explore this directory in more detail

soon; however, almost all of the classes in your application will be in this directory.

The Bootstrap Directory

The bootstrap directory contains the app.php file which bootstraps the framework. This directory also

houses a cache directory which contains framework generated files for performance optimization such as

the route and services cache files.

The Config Directory

The config directory, as the name implies, contains all of your application's configuration files. It's a great

idea to read through all of these files and familiarize yourself with all of the options available to you.

The Database Directory

The database directory contains your database migrations, model factories, and seeds. If you wish, you

may also use this directory to hold an SQLite database.

The Public Directory

The public directory contains the index.php file, which is the entry point for all requests entering your

application and configures autoloading. This directory also houses your assets such as images, JavaScript, and

CSS.

The Resources Directory

The resources directory contains your views as well as your raw, un-compiled assets such as CSS or

JavaScript.

The Routes Directory

The routes directory contains all of the route definitions for your application. By default, two route files

are included with Laravel: web.php and console.php .

The web.php file contains routes that Laravel places in the web middleware group, which provides

session state, CSRF protection, and cookie encryption.

39

https://laravel.com/docs/12.x/views

The console.php file is where you may define all of your closure-based console commands. It does

not define HTTP routes but allows defining console-based entry points.

You may also install additional route files for API routes (api.php) and broadcasting channels

(channels.php) via artisan commands.

The Storage Directory

The storage directory contains your logs, compiled Blade templates, file-based sessions, file caches, and

other files generated by the framework. It includes subdirectories:

app : for files generated by your application.

framework : for framework generated files and caches.

logs : for your application's log files.

The storage/app/public directory may be used to store user-generated files, such as profile avatars. You

should create a symbolic link at public/storage pointing to this directory using the command:

php artisan storage:link

The Tests Directory

The tests directory contains your automated tests, including examples using Pest or PHPUnit. Test classes

should be suffixed with Test . You can run tests with:

/vendor/bin/pest

/vendor/bin/phpunit

php artisan test

The Vendor Directory

The vendor directory contains your Composer dependencies.

The App Directory (Detailed)

The majority of your application code is housed here. It's namespaced under App and autoloaded via PSR-4.

It contains subdirectories like:

Http : controllers, middleware, form requests.

Models : your Eloquent ORM models.

Providers : service providers.

Console , Events , Exceptions , Jobs , Listeners , Mail , Notifications ,

Policies , Rules , and more.

Many classes can be generated via artisan commands such as php artisan make:model ,

make:controller , etc.

The Broadcasting Directory

Contains broadcast channel classes, generated with make:channel .

The Console Directory

Contains custom artisan commands, generated with make:command .

40

https://getcomposer.org/

The Events Directory

Houses event classes, generated with event:generate or make:event .

The Exceptions Directory

Contains custom exception classes, generated with make:exception .

The Http Directory

Contains controllers, middleware, and request classes.

The Jobs Directory

Houses queueable jobs, created with make:job .

The Listeners Directory

Contains classes handling events, generated with make:listener .

The Mail Directory

Contains email classes, created with make:mail .

The Models Directory

Contains your Eloquent models.

The Notifications Directory

Houses notification classes, generated with make:notification .

The Policies Directory

Contains authorization policy classes, generated with make:policy .

The Providers Directory

Contains service providers, including the default AppServiceProvider .

The Rules Directory

Contains custom validation rule classes, created with make:rule .

41

Hello

42

Hello

43

Deployment

Introduction

When you're ready to deploy your Laravel application to production, there are some important things you can

do to make sure your application is running as efficiently as possible. In this document, we'll cover some great

starting points for making sure your Laravel application is deployed properly.

Server Requirements

The Laravel framework has a few system requirements. You should ensure that your web server has the

following minimum PHP version and extensions:

PHP >= 8.2

Ctype PHP Extension

cURL PHP Extension

DOM PHP Extension

Fileinfo PHP Extension

Filter PHP Extension

Hash PHP Extension

Mbstring PHP Extension

OpenSSL PHP Extension

PCRE PHP Extension

PDO PHP Extension

Session PHP Extension

Tokenizer PHP Extension

XML PHP Extension

Server Configuration

Nginx

If you are deploying your application to a server that is running Nginx, you may use the following

configuration file as a starting point for configuring your web server. Most likely, this file will need to be

customized depending on your server's configuration. If you would like assistance in managing your server,

consider using a fully-managed Laravel platform like Laravel Cloud.

Please ensure your web server directs all requests to your application's public/index.php file. You should

never attempt to move the index.php file to your project's root, as serving the application from the project

root will expose many sensitive configuration files to the public Internet:

server {

 listen 80;

 listen [::]:80;

 server_name example.com;

 root /srv/example.com/public;

 add_header X-Frame-Options "SAMEORIGIN";

 add_header X-Content-Type-Options "nosniff";

 index index.php;

44

https://cloud.laravel.com/

 charset utf-8;

 location / {

 try_files $uri $uri/ /index.php?$query_string;

 }

 location = /favicon.ico { access_log off; log_not_found off; }

 location = /robots.txt { access_log off; log_not_found off; }

 error_page 404 /index.php;

 location ~ ^/index\.php(/|$) {

 fastcgi_pass unix:/var/run/php/php8.2-fpm.sock;

 fastcgi_param SCRIPT_FILENAME $realpath_root$fastcgi_script_name;

 include fastcgi_params;

 fastcgi_hide_header X-Powered-By;

 }

 location ~ /\.(?!well-known).* {

 deny all;

 }

}

FrankenPHP

FrankenPHP may also be used to serve your Laravel applications. FrankenPHP is a modern PHP application

server written in Go. To serve a Laravel PHP application using FrankenPHP, you may simply invoke its php-

server command:

frankenphp php-server -r public/

To take advantage of more powerful features supported by FrankenPHP, such as its Laravel Octane

integration, HTTP/3, modern compression, or the ability to package Laravel applications as standalone

binaries, please consult FrankenPHP's Laravel documentation.

Directory Permissions

Laravel will need to write to the bootstrap/cache and storage directories. Ensure that the web server

process owner has permission to write to these directories.

Optimization

When deploying your application to production, it is essential to cache certain files such as configuration,

events, routes, and views. Laravel provides an artisan command optimize to cache all of these files,

typically invoked during deployment:

php artisan optimize

To remove all cache files generated by optimize and clear cache keys:

php artisan optimize:clear

Caching Configuration

Run the following command during deployment:

45

https://frankenphp.dev/
https://laravel.com/docs/12.x/octane
https://frankenphp.dev/docs/laravel/

php artisan config:cache

This will combine all configuration files into a single cached file, reducing filesystem trips when loading

configuration values. Be sure to only call env from configuration files, as environment variables are not

available once cache is compiled:

Note: Once cached, the .env file will not be loaded, and calls to env() will return null .

Caching Events

Cache your application's auto-discovered event-to-listener mappings:

php artisan event:cache

Caching Routes

For large applications with many routes, cache route registrations:

php artisan route:cache

Caching Views

Precompile Blade views to improve performance:

php artisan view:cache

Debug Mode

The debug option in config/app.php determines how much error information is displayed. It defaults

to the APP_DEBUG environment variable stored in .env . In production, this should always be set to

false to avoid exposing sensitive information.

The Health Route

Laravel includes a built-in health check route, useful for monitoring application status in production. It is

typically served at /up or /status , returning 200 if healthy, or 500 if not.

Configure the URI in bootstrap/app :

->withRouting([

 'web' => __DIR__.'/../routes/web.php',

 'commands' => __DIR__.'/../routes/console.php',

 'health' => '/up',

])

Requests to this route dispatch an Illuminate\Foundation\Events\DiagnosingHealth event,

allowing custom health checks through event listeners.

Deploying With Laravel Cloud or Forge

Laravel Cloud

If you want a fully-managed, scalable deployment platform, check out Laravel Cloud. It offers managed

compute, databases, caches, and object storage, tailored for Laravel apps.

46

https://cloud.laravel.com/

Laravel Forge

If you manage your own servers but want simplified server management, Laravel Forge supports creating and

managing servers on providers like DigitalOcean, Linode, AWS, etc. Forge installs and manages PHP, web

server, database, Redis, and other tools needed for Laravel applications.

47

https://forge.laravel.com/

Request Lifecycle

Introduction

When using any tool in the "real world", you feel more confident if you understand how that tool works.

Application development is no different. When you understand how your development tools function, you feel

more comfortable and confident using them.

The goal of this document is to give you a good, high-level overview of how the Laravel framework works. By

getting to know the overall framework better, everything feels less "magical" and you will be more confident

building your applications. If you don't understand all of the terms right away, don't lose heart! Just try to get a

basic grasp of what is going on, and your knowledge will grow as you explore other sections of the

documentation.

Lifecycle Overview

First Steps

The entry point for all requests to a Laravel application is the public/index.php file. All requests are

directed to this file by your web server (Apache / Nginx) configuration. The index.php file doesn't contain

much code. Rather, it is a starting point for loading the rest of the framework.

The index.php file loads the Composer generated autoloader definition, and then retrieves an instance of

the Laravel application from bootstrap/app.php . The first action taken by Laravel itself is to create an

instance of the application / service container.

HTTP / Console Kernels

Next, the incoming request is sent to either the HTTP kernel or the console kernel, using the

handleRequest or handleCommand methods of the application instance, depending on the type of

request entering the application. These two kernels serve as the central location through which all requests

flow. For now, let's just focus on the HTTP kernel, which is an instance of

Illuminate\Foundation\Http\Kernel .

The HTTP kernel defines an array of bootstrappers that will be run before the request is executed. These

bootstrappers configure error handling, configure logging, detect the application environment, and perform

other tasks that need to be done before the request is actually handled. Typically, these classes handle internal

Laravel configuration that you do not need to worry about.

The HTTP kernel is also responsible for passing the request through the application's middleware stack. These

middleware handle reading and writing the HTTP session, determining if the application is in maintenance

mode, verifying the CSRF token, and more. We'll talk more about these soon.

The method signature for the HTTP kernel's handle method is quite simple: it receives a Request and

returns a Response . Think of the kernel as being a big black box that represents your entire application.

Feed it HTTP requests and it will return HTTP responses.

Service Providers

One of the most important kernel bootstrapping actions is loading the service providers for your application.

Service providers are responsible for bootstrapping all of the framework's various components, such as the

database, queue, validation, and routing components.

48

https://laravel.com/docs/12.x/container
https://laravel.com/docs/12.x/configuration#environment-configuration
https://laravel.com/docs/12.x/session
https://laravel.com/docs/12.x/csrf
https://laravel.com/docs/12.x/providers

Laravel will iterate through this list of providers and instantiate each of them. After instantiating the

providers, the register method will be called on all of the providers. Then, once all of the providers have

been registered, the boot method will be called on each provider. This is so service providers may depend

on every container binding being registered and available by the time their boot method is executed.

Essentially, every major feature offered by Laravel is bootstrapped and configured by a service provider. Since

they bootstrap and configure so many features offered by the framework, service providers are the most

important aspect of the entire Laravel bootstrap process.

While the framework internally uses dozens of service providers, you also have the option to create your own.

You can find a list of the user-defined or third-party service providers that your application is using in the

bootstrap/providers.php file.

Routing

Once the application has been bootstrapped and all service providers have been registered, the Request

will be handed off to the router for dispatching. The router will dispatch the request to a route or controller, as

well as run any route specific middleware.

Middleware provide a convenient mechanism for filtering or examining HTTP requests entering your

application. For example, Laravel includes a middleware that verifies if the user of your application is

authenticated. If the user is not authenticated, the middleware will redirect the user to the login screen.

However, if the user is authenticated, the middleware will allow the request to proceed further into the

application. Some middleware are assigned to all routes within the application, like

PreventRequestsDuringMaintenance , while some are only assigned to specific routes or route groups.

You can learn more about middleware by reading the complete middleware documentation.

If the request passes through all of the matched route's assigned middleware, the route or controller method

will be executed and the response returned by the route or controller method will be sent back through the

route's chain of middleware.

Finishing Up

Once the route or controller method returns a response, the response will travel back outward through the

route's middleware, giving the application a chance to modify or examine the outgoing response.

Finally, once the response travels back through the middleware, the HTTP kernel's handle method returns

the response object to the handleRequest of the application instance, and this method calls the send

method on the returned response. The send method sends the response content to the user's web browser.

We've now completed our journey through the entire Laravel request lifecycle!

Focus on Service Providers

Service providers are truly the key to bootstrapping a Laravel application. The application instance is created,

the service providers are registered, and the request is handed to the bootstrapped application. It's really that

simple!

Having a firm grasp of how a Laravel application is built and bootstrapped via service providers is very

valuable. Your application's user-defined service providers are stored in the app/Providers directory.

By default, the AppServiceProvider is fairly empty. This provider is a great place to add your

application's own bootstrapping and service container bindings. For large applications, you may wish to create

several service providers, each with more granular bootstrapping for specific services used by your

application.

49

https://laravel.com/docs/12.x/middleware

Service Container

Introduction

The Laravel service container is a powerful tool for managing class dependencies and performing dependency

injection. Dependency injection is a fancy phrase that essentially means this: class dependencies are injected

into the class via the constructor or, in some cases, setter methods.

Let's look at a simple example:

<?php

namespace App\Http\Controllers;

use App\Services\AppleMusic;

use Illuminate\View\View;

class PodcastController extends Controller

{

 /**

 * Create a new controller instance.

 */

 public function __construct(

 protected AppleMusic $apple,

) {}

 /**

 * Show information about the given podcast.

 */

 public function show(string $id): View

 {

 return view('podcasts.show', [

 'podcast' => $this->apple->findPodcast($id)

]);

 }

}

In this example, the PodcastController needs to retrieve podcasts from a data source such as Apple

Music. So, we will inject a service that is able to retrieve podcasts. Since the service is injected, we are able to

easily mock, or create a dummy implementation of the AppleMusic service when testing our application.

A deep understanding of the Laravel service container is essential to building a powerful, large application, as

well as for contributing to the Laravel core itself.

Zero Configuration Resolution

If a class has no dependencies or only depends on other concrete classes (not interfaces), the container does

not need to be instructed on how to resolve that class. For example, you may place the following code in your

routes/web.php file:

<?php

class Service

{

 // ...

50

}

Route::get('/', function (Service $service) {

 dd($service::class);

});

The container will automatically resolve Service without additional configuration.

Binding

Binding Basics

Almost all of your service container bindings will be registered within service providers, so most of these

examples will demonstrate using the container in that context.

Within a service provider, you always have access to the container via the $this->app property. You can

register a binding like this:

use App\Services\Transistor;

use App\Services\PodcastParser;

use Illuminate\Contracts\Foundation\Application;

$this->app->bind(Transistor::class, function (Application $app) {

 return new Transistor($app->make(PodcastParser::class));

});

Note that we receive the container itself as an argument to the resolver, which we can then use to resolve sub-

dependencies.

Interacting Outside Service Providers

You can also interact with the container outside of service providers via the App facade:

use App\Services\Transistor;

use Illuminate\Contracts\Foundation\Application;

use Illuminate\Support\Facades\App;

App::bind(Transistor::class, function (Application $app) {

 // ...

});

Conditional Binding

You may use bindIf to register a binding only if it has not already been registered:

$this->app->bindIf(Transistor::class, function (Application $app) {

 return new Transistor($app->make(PodcastParser::class));

});

Inferring Class Types

Laravel can infer the class type from the return type of the closure:

App::bind(function (Application $app): Transistor {

 return new Transistor($app->make(PodcastParser::class));

51

https://laravel.com/docs/12.x/providers

});

Binding A Singleton

The singleton method binds a class or interface into the container that should only be resolved once.

Subsequent calls return the same instance:

use App\Services\Transistor;

use App\Services\PodcastParser;

$this->app->singleton(Transistor::class, function (Application $app) {

 return new Transistor($app->make(PodcastParser::class));

});

You can also conditionally bind singletons with singletonIf :

$this->app->singletonIf(Transistor::class, function (Application $app) {

 return new Transistor($app->make(PodcastParser::class));

});

Binding Scoped Singletons

The scoped method binds instances only within a single request or job lifecycle, and they are flushed when

the lifecycle resets:

use App\Services\Transistor;

use App\Services\PodcastParser;

$this->app->scoped(Transistor::class, function (Application $app) {

 return new Transistor($app->make(PodcastParser::class));

});

Similarly, scopedIf registers the scoped binding only if not already registered:

$this->app->scopedIf(Transistor::class, function (Application $app) {

 return new Transistor($app->make(PodcastParser::class));

});

Binding Instances

You can bind an existing object instance directly:

use App\Services\Transistor;

use App\Services\PodcastParser;

$service = new Transistor(new PodcastParser);

$this->app->instance(Transistor::class, $service);

Binding Interfaces to Implementations

Bind an interface to a specific implementation to facilitate dependency injection:

use App\Contracts\EventPusher;

use App\Services\RedisEventPusher;

$this->app->bind(EventPusher::class, RedisEventPusher::class);

52

Now, when you type-hint the EventPusher interface, Laravel injects RedisEventPusher .

use App\Contracts\EventPusher;

/**

 * Create a new class instance.

 */

public function __construct(

 protected EventPusher $pusher,

) {}

Contextual Binding

Define different implementations for interfaces depending on the class requesting them:

use App\Http\Controllers\PhotoController;

use Illuminate\Contracts\Filesystem\Filesystem;

use Illuminate\Support\Facades\Storage;

$this->app->when(PhotoController::class)

 ->needs(Filesystem::class)

 ->give(function () {

 return Storage::disk('local');

 });

$this->app->when([VideoController::class, UploadController::class])

 ->needs(Filesystem::class)

 ->give(function () {

 return Storage::disk('s3');

 });

Contextual Attributes

Inject specific values or configuration directly into classes:

namespace App\Http\Controllers;

use Illuminate\Container\Attributes\Storage;

use Illuminate\Contracts\Filesystem\Filesystem;

class PhotoController extends Controller

{

 public function __construct(

 #[Storage('local')] protected Filesystem $filesystem

) {

 // ...

 }

}

Additional attributes include Auth , Cache , Config , Context , DB , Give , Log ,

RouteParameter , Tag , and more, allowing fine-grained dependency management.

namespace App\Http\Controllers;

use App\Contracts\UserRepository;

53

use App\Models\Photo;

use App\Repositories\DatabaseRepository;

use Illuminate\Container\Attributes\Auth;

use Illuminate\Container\Attributes\Cache;

use Illuminate\Container\Attributes\Config;

use Illuminate\Container\Attributes\Context;

use Illuminate\Container\Attributes\DB;

use Illuminate\Container\Attributes\Give;

use Illuminate\Container\Attributes\Log;

use Illuminate\Container\Attributes\RouteParameter;

use Illuminate\Container\Attributes\Tag;

use Illuminate\Contracts\Auth\Guard;

use Illuminate\Contracts\Cache\Repository;

use Illuminate\Database\Connection;

use Psr\Log\LoggerInterface;

class PhotoController extends Controller

{

 public function __construct(

 #[Auth('web')] protected Guard $auth,

 #[Cache('redis')] protected Repository $cache,

 #[Config('app.timezone')] protected string $timezone,

 #[Context('uuid')] protected string $uuid,

 #[Context('ulid', hidden: true)] protected string $ulid,

 #[DB('mysql')] protected Connection $connection,

 #[Give(DatabaseRepository::class)] protected UserRepository $users,

 #[Log('daily')] protected LoggerInterface $log,

 #[RouteParameter('photo')] protected Photo $photo,

 #[Tag('reports')] protected iterable $reports,

) {

 // ...

 }

}

Laravel also provides a CurrentUser attribute to inject the authenticated user:

use App\Models\User;

use Illuminate\Container\Attributes\CurrentUser;

Route::get('/user', function (#[CurrentUser] User $user) {

 return $user;

})->middleware('auth');

Defining Custom Attributes

Create your own contextual attributes by implementing

Illuminate\Contracts\Container\ContextualAttribute . Example: re-implementing Laravel's

Config attribute:

<?php

namespace App\Attributes;

use Attribute;

use Illuminate\Contracts\Container\Container;

use Illuminate\Contracts\Container\ContextualAttribute;

54

#[Attribute(Attribute::TARGET_PARAMETER)]

class Config implements ContextualAttribute

{

 public function __construct(public string $key, public mixed $default = null) {}

 public static function resolve(self $attribute, Container $container)

 {

 return $container->make('config')->get($attribute->key, $attribute->default);

 }

}

Binding Primitives

Inject primitive values such as integers or strings:

use App\Http\Controllers\UserController;

$this->app->when(UserController::class)

 ->needs('$variableName')

 ->give($value);

Inject tagged dependencies:

$this->app->when(ReportAggregator::class)

 ->needs('$reports')

 ->giveTagged('reports');

Inject configuration values:

$this->app->when(ReportAggregator::class)

 ->needs('$timezone')

 ->giveConfig('app.timezone');

Binding Typed Variadics

Inject arrays of typed objects via variadic constructor parameters:

<?php

use App\Models\Filter;

use App\Services\Logger;

class Firewall

{

 /**

 * The filter instances.

 *

 * @var array

 */

 protected $filters;

 public function __construct(

 protected Logger $logger,

 Filter ...$filters,

) {

 $this->filters = $filters;

55

 }

}

Resolve with a closure returning an array:

$this->app->when(Firewall::class)

 ->needs(Filter::class)

 ->give(function (Application $app) {

 return [

 $app->make(NullFilter::class),

 $app->make(ProfanityFilter::class),

 $app->make(TooLongFilter::class),

];

 });

Or provide an array of class names:

$this->app->when(Firewall::class)

 ->needs(Filter::class)

 ->give([

 NullFilter::class,

 ProfanityFilter::class,

 TooLongFilter::class,

]);

Variadic Tag Dependencies

Inject all tagged implementations of a class:

$this->app->when(ReportAggregator::class)

 ->needs(Report::class)

 ->giveTagged('reports');

Tagging

Assign a tag to multiple bindings:

$this->app->bind(CpuReport::class, function () {

 // ...

});

$this->app->bind(MemoryReport::class, function () {

 // ...

});

$this->app->tag([CpuReport::class, MemoryReport::class], 'reports');

Resolve all services with a tag:

$this->app->bind(ReportAnalyzer::class, function (Application $app) {

 return new ReportAnalyzer($app->tagged('reports'));

});

Extending Bindings

Modify already resolved services:

56

$this->app->extend(Service::class, function (Service $service, Application $app) {

 return new DecoratedService($service);

});

Resolving

The make Method

Resolve a class instance:

$transistor = $this->app->make(Transistor::class);

The makeWith Method

Pass additional constructor parameters:

$transistor = $this->app->makeWith(Transistor::class, ['id' => 1]);

Check if a Binding Exists

if ($this->app->bound(Transistor::class)) {

 // ...

}

Outside Helper or Facade

use App\Services\Transistor;

use Illuminate\Support\Facades\App;

$transistor = App::make(Transistor::class);

$transistor = app(Transistor::class);

Injecting the Container

Type-hint Illuminate\Container\Container in constructor:

use Illuminate\Container\Container;

public function __construct(

 protected Container $container,

) {}

Automatic Injection

Type-hint dependencies in constructor, method, or job handle:

<?php

namespace App\Http\Controllers;

use App\Services\AppleMusic;

class PodcastController extends Controller

{

57

 public function __construct(

 protected AppleMusic $apple,

) {}

 public function show(string $id): Podcast

 {

 return $this->apple->findPodcast($id);

 }

}

Or in method parameters:

<?php

namespace App\Http\Controllers;

use App\Services\AppleMusic;

class PodcastController extends Controller

{

 public function show(AppleMusic $apple, string $id): Podcast

 {

 return $apple->findPodcast($id);

 }

}

Method Invocation and Injection

Invoke methods on objects with dependencies injected:

<?php

namespace App;

use App\Services\AppleMusic;

class PodcastStats

{

 /**

 * Generate a new podcast stats report.

 */

 public function generate(AppleMusic $apple): array

 {

 return [

 // ...

];

 }

}

Call methods via container:

use App\PodcastStats;

$stats = App::call([new PodcastStats, 'generate']);

Or invoke closures with dependencies:

use App\Services\AppleMusic;

58

$result = App::call(function (AppleMusic $apple) {

 // ...

});

Container Events

Listen to resolving events:

$this->app->resolving(Transistor::class, function (Transistor $transistor, Application

 // Called when container resolves objects of type "Transistor"...

});

$this->app->resolving(function (mixed $object, Application $app) {

 // Called when container resolves object of any type...

});

Rebinding events:

$this->app->rebinding(PodcastPublisher::class, function (Application $app, PodcastPubl

 // ...

});

// To override existing binding:

$this->app->bind(PodcastPublisher::class, TransistorPublisher::class);

PSR-11 Interface

Laravel's container implements PSR-11:

use App\Services\Transistor;

use Psr\Container\ContainerInterface;

Route::get('/', function (ContainerInterface $container) {

 $service = $container->get(Transistor::class);

 // ...

});

Exceptions will be of type Psr\Container\NotFoundExceptionInterface or

Psr\Container\ContainerExceptionInterface depending on the failure.

59

Service Providers

Introduction

Service providers are the central place of all Laravel application bootstrapping. Your own application, as well

as all of Laravel's core services, are bootstrapped via service providers.

But, what do we mean by "bootstrapped"? In general, we mean registering things, including registering

service container bindings, event listeners, middleware, and even routes. Service providers are the central

place to configure your application.

Laravel uses dozens of service providers internally to bootstrap its core services, such as the mailer, queue,

cache, and others. Many of these providers are deferred providers, meaning they will not be loaded on every

request, but only when the services they provide are actually needed.

All user-defined service providers are registered in the bootstrap/providers.php file. In the following

documentation, you will learn how to write your own service providers and register them with your Laravel

application.

If you would like to learn more about how Laravel handles requests and works internally, check out our

documentation on the Laravel request lifecycle.

Writing Service Providers

All service providers extend the Illuminate\Support\ServiceProvider class. Most service providers

contain a register and a boot method. Within the register method, you should only bind things

into the service container. You should never attempt to register any event listeners, routes, or any other piece

of functionality within the register method.

The Artisan CLI can generate a new provider via the make:provider command. Laravel will automatically

register your new provider in your application's bootstrap/providers.php file:

php artisan make:provider RiakServiceProvider

The Register Method

As mentioned previously, within the register method, you should only bind things into the service

container. You should never attempt to register any event listeners, routes, or any other piece of functionality

within the register method. Otherwise, you may accidentally use a service that is provided by a service

provider which has not loaded yet.

Let's take a look at a basic service provider. Within any of your service provider methods, you always have

access to the $app property which provides access to the service container:

<?php

namespace App\Providers;

use App\Services\Riak\Connection;

use Illuminate\Contracts\Foundation\Applicaton;

use Illuminate\Support\ServiceProvider;

class RiakServiceProvider extends ServiceProvider

60

https://laravel.com/docs/12.x/lifecycle
https://laravel.com/docs/12.x/container

{

 /**

 * Register any application services.

 */

 public function register(): void

 {

 $this->app->singleton(Connection::class, function (Application $app) {

 return new Connection(config('riak'));

 });

 }

}

This service provider only defines a register method, and uses that method to define an implementation

of App\Services\Riak\Connection in the service container. If you're not yet familiar with Laravel's

service container, check out its documentation.

The bindings and singletons Properties

If your service provider registers many simple bindings, you may wish to use the bindings and

singletons properties instead of manually registering each container binding. When the service provider

is loaded by the framework, it will automatically check for these properties and register their bindings:

<?php

namespace App\Providers;

use App\Contracts\DowntimeNotifier;

use App\Contracts\ServerProvider;

use App\Services\DigitalOceanServerProvider;

use App\Services\PingdomDowntimeNotifier;

use App\Services\ServerToolsProvider;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{

 /**

 * All of the container bindings that should be registered.

 *

 * @var array

 */

 public $bindings = [

 ServerProvider::class => DigitalOceanServerProvider::class,

];

 /**

 * All of the container singletons that should be registered.

 *

 * @var array

 */

 public $singletons = [

 DowntimeNotifier::class => PingdomDowntimeNotifier::class,

 ServerProvider::class => ServerToolsProvider::class,

];

}

61

https://laravel.com/docs/12.x/container

The Boot Method

So, what if we need to register a view composer within our service provider? This should be done within the

boot method. This method is called after all other service providers have been registered, meaning you

have access to all other services that have been registered by the framework:

<?php

namespace App\Providers;

use Illuminate\Support\Facades\View;

use Illuminate\Support\ServiceProvider;

class ComposerServiceProvider extends ServiceProvider

{

 /**

 * Bootstrap any application services.

 */

 public function boot(): void

 {

 View::composer('view', function () {

 // ...

 });

 }

}

Boot Method Dependency Injection

You may type-hint dependencies for your service provider's boot method. The service container will

automatically inject any dependencies you need:

<?php

use Illuminate\Contracts\Routing\ResponseFactory;

/**

 * Bootstrap any application services.

 */

public function boot(ResponseFactory $response): void

{

 $response->macro('serialized', function (mixed $value) {

 // ...

 });

}

Registering Providers

All service providers are registered in the bootstrap/providers.php configuration file. This file returns

an array that contains the class names of your application's service providers:

<?php

return [

 App\Providers\AppServiceProvider::class,

];

62

https://laravel.com/docs/12.x/views#view-composers
https://laravel.com/docs/12.x/container

When you invoke the make:provider Artisan command, Laravel will automatically add the generated

provider to the bootstrap/providers.php file. However, if you have manually created the provider

class, you should manually add the provider class to the array:

<?php

return [

 App\Providers\AppServiceProvider::class,

 App\Providers\ComposerServiceProvider::class,

];

Deferred Providers

If your provider is only registering bindings in the service container, you may choose to defer its registration

until one of the registered bindings is actually needed. Deferring the loading of such a provider will improve

the performance of your application, since it is not loaded from the filesystem on every request.

Laravel compiles and stores a list of all of the services supplied by deferred service providers, along with the

name of its service provider class. Then, only when you attempt to resolve one of these services does Laravel

load the service provider.

To defer the loading of a provider, implement the

\Illuminate\Contracts\Support\DeferrableProvider interface and define a provides

method. The provides method should return the service container bindings registered by the provider:

<?php

namespace App\Providers;

use App\Services\Riak\Connection;

use Illuminate\Contracts\Foundation\Application;

use Illuminate\Contracts\Support\DeferrableProvider;

use Illuminate\Support\ServiceProvider;

class RiakServiceProvider extends ServiceProvider implements DeferrableProvider

{

 /**

 * Register any application services.

 */

 public function register(): void

 {

 $this->app->singleton(Connection::class, function (Application $app) {

 return new Connection($app['config']['riak']);

 });

 }

 /**

 * Get the services provided by the provider.

 *

 * @return array<int, string>

 */

 public function provides(): array

 {

 return [Connection::class];

 }

}

63

https://laravel.com/docs/12.x/container

Facades

Introduction

Throughout the Laravel documentation, you will see examples of code that interacts with Laravel's features via

"facades". Facades provide a "static" interface to classes that are available in the application's service container.

Laravel ships with many facades which provide access to almost all of Laravel's features.

Laravel facades serve as "static proxies" to underlying classes in the service container, providing the benefit of

a terse, expressive syntax while maintaining more testability and flexibility than traditional static methods. It's

perfectly fine if you don't totally understand how facades work - just go with the flow and continue learning

about Laravel.

All of Laravel's facades are defined in the Illuminate\Support\Facades namespace. So, we can easily

access a facade like so:

use Illuminate\Support\Facades\Cache;

use Illuminate\Support\Facades\Route;

Route::get('/cache', function () {

 return Cache::get('key');

});

Throughout the Laravel documentation, many of the examples will use facades to demonstrate various

features of the framework.

Helper Functions

Helper Functions

To complement facades, Laravel offers a variety of global "helper functions" that make it even easier to

interact with common Laravel features. Some of the common helper functions you may interact with are

view , response , url , config , and more. Each helper function offered by Laravel is documented

with their corresponding feature; however, a complete list is available within the dedicated helper

documentation.

For example, instead of using the Illuminate\Support\Facades\Response facade to generate a JSON

response, we may simply use the response function. Because helper functions are globally available, you

do not need to import any classes in order to use them:

use Illuminate\Support\Facades\Response;

Route::get('/users', function () {

 return Response::json([

 // ...

]);

});

or

Route::get('/users', function () {

 return response()->json([

 // ...

64

https://laravel.com/docs/12.x/container
https://laravel.com/docs/12.x/helpers
https://laravel.com/docs/12.x/helpers

]);

});

When to Utilize Facades

Facades have many benefits. They provide a terse, memorable syntax that allows you to use Laravel's features

without remembering long class names that must be injected or configured manually. Furthermore, because

of their unique usage of PHP's dynamic methods, they are easy to test.

However, some care must be taken when using facades. The primary danger of facades is class "scope creep".

Since facades are so easy to use and do not require injection, it can be easy to let your classes continue to grow

and use many facades in a single class. Using dependency injection, this potential is mitigated by the visual

feedback a large constructor gives you that your class is growing too large. So, when using facades, pay special

attention to the size of your class so that its scope of responsibility stays narrow. If your class is getting too

large, consider splitting it into multiple smaller classes.

Facades vs. Dependency Injection

One of the primary benefits of dependency injection is the ability to swap implementations of the injected

class. This is useful during testing since you can inject a mock or stub and assert that various methods were

called on the stub.

Typically, it would not be possible to mock or stub a truly static class method. However, since facades use

dynamic methods to proxy method calls to objects resolved from the service container, we actually can test

facades just as we would test an injected class instance. For example, given the following route:

use Illuminate\Support\Facades\Cache;

Route::get('/cache', function () {

 return Cache::get('key');

});

Using Laravel's facade testing methods, we can write the following test to verify that the Cache::get

method was called with the argument we expected:

use Illuminate\Support\Facades\Cache;

test('basic example', function () {

 Cache::shouldReceive('get')

 ->with('key')

 ->andReturn('value');

 $response = $this->get('/cache');

 $response->assertSee('value');

});

How Facades Work

In a Laravel application, a facade is a class that provides access to an object from the container. The

machinery that makes this work is in the Facade class. Laravel's facades, and any custom facades you

create, will extend the base Illuminate\Support\Facades\Facade class.

The Facade base class makes use of the __callStatic() magic-method to defer calls from your facade

to an object resolved from the container. In the example below, a call is made to the Laravel cache system. By

glancing at this code, one might assume that the static get method is being called on the Cache class:

65

<?php

namespace App\Http\Controllers;

use Illuminate\Support\Facades\Cache;

class UserController extends Controller

{

 /**

 * Show the profile for the given user.

 */

 public function showProfile(string $id): \Illuminate\View\View

 {

 $user = Cache::get('user:' . $id);

 return view('profile', ['user' => $user]);

 }

}

Notice that near the top of the file we are "importing" the Cache facade. This facade serves as a proxy for

accessing the underlying implementation of the Illuminate\Contracts\Cache\Factory interface.

Any calls we make using the facade will be passed to the underlying instance of Laravel's cache service.

If we look at that Illuminate\Support\Facades\Cache class, you'll see that there is no static method

get :

class Cache extends Facade

{

 /**

 * Get the registered name of the component.

 */

 protected static function getFacadeAccessor(): string

 {

 return 'cache';

 }

}

Instead, the Cache facade extends the base Facade class and defines the method

getFacadeAccessor() . This method's job is to return the name of a service container binding. When a

user references any static method on the Cache facade, Laravel resolves the cache binding from the

service container and runs the requested method (in this case, get) against that object.

Real-Time Facades

Using real-time facades, you may treat any class in your application as if it was a facade. To illustrate how this

can be used, let's first examine some code that does not use real-time facades. For example, let's assume our

Podcast model has a publish method. However, in order to publish the podcast, we need to inject a

Publisher instance:

<?php

namespace App\Models;

use App\Contracts\Publisher;

use Illuminate\Database\Eloquent\Model;

66

https://laravel.com/docs/12.x/container

class Podcast extends Model

{

 /**

 * Publish the podcast.

 */

 public function publish(Publisher $publisher): void

 {

 $this->update(['publishing' => now()]);

 $publisher->publish($this);

 }

}

Injecting a publisher implementation into the method allows us to easily test the method in isolation since we

can mock the injected publisher. However, it requires us to always pass a publisher instance each time we call

the publish method.

Using real-time facades, we can maintain the same testability while not being required to explicitly pass a

Publisher instance. To generate a real-time facade, prefix the namespace of the imported class with

Facades :

<?php

namespace App\Models;

use App\Contracts\Publisher;

use Facades\App\Contracts\Publisher;

use Illuminate\Database\Eloquent\Model;

class Podcast extends Model

{

 /**

 * Publish the podcast.

 */

 public function publish(Publisher $publisher): void

 {

 $this->update(['publishing' => now()]);

 $publisher->publish($this);

 Publisher::publish($this);

 }

}

When the real-time facade is used, the publisher implementation will be resolved out of the service container

using the portion of the interface or class name that appears after the Facades prefix. When testing, we can

use Laravel's built-in facade testing helpers to mock this method call:

use App\Models\Podcast;

use Facades\App\Contracts\Publisher;

use Illuminate\Foundation\Testing\RefreshDatabase;

uses(RefreshDatabase::class);

test('podcast can be published', function () {

 $podcast = Podcast::factory()->create();

 Publisher::shouldReceive('publish')->once()->with($podcast);

67

 $podcast->publish();

});

or in a feature test:

namespace Tests\Feature;

use App\Models\Podcast;

use Facades\App\Contracts\Publisher;

use Illuminate\Foundation\Testing\RefreshDatabase;

use Tests\TestCase;

class PodcastTest extends TestCase

{

 use RefreshDatabase;

 public function test_podcast_can_be_published(): void

 {

 $podcast = Podcast::factory()->create();

 Publisher::shouldReceive('publish')->once()->with($podcast);

 $podcast->publish();

 }

}

When the facade is invoked, it will resolve the underlying class from the service container, allowing you to call

methods directly as if it was a static class.

Facade Class Reference

Below you'll find every facade and its underlying class. This is a useful tool for quickly digging into the API

documentation for a given facade root. The service container binding key is also included where applicable.

Facade Class Service Container Binding

App Illuminate\Foundation\Application app

Artisan Illuminate\Contracts\Console\Kernel artisan

Auth (Instance) Illuminate\Contracts\Auth\Guard auth.driver

Auth Illuminate\Auth\AuthManager auth

Blade Illuminate\View\Compilers\BladeCompiler blade.compiler

Broadcasting (Instance) Illuminate\Contracts\Broadcasting\Broadcaster

Broadcasting Illuminate\Contracts\Broadcasting\Factory

Bus Illuminate\Contracts\Bus\Dispatcher

Cache (Instance) Illuminate\Cache\Repository cache.store

Cache Illuminate\Cache\CacheManager cache

Config Illuminate\Config\Repository config

Context Illuminate\Log\Context\Repository

Cookie Illuminate\Cookie\CookieJar cookie

Crypt Illuminate\Encryption\Encrypter encrypter

Date Illuminate\Support\DateFactory date

DB (Instance) Illuminate\Database\Connection db.connection

DB Illuminate\Database\DatabaseManager db

68

https://laravel.com/docs/12.x/container
https://api.laravel.com/docs/12.x/Illuminate/Foundation/Application.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Console/Kernel.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Auth/Guard.html
https://api.laravel.com/docs/12.x/Illuminate/Auth/AuthManager.html
https://api.laravel.com/docs/12.x/Illuminate/View/Compilers/BladeCompiler.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Broadcasting/Broadcaster.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Broadcasting/Factory.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Bus/Dispatcher.html
https://api.laravel.com/docs/12.x/Illuminate/Cache/Repository.html
https://api.laravel.com/docs/12.x/Illuminate/Cache/CacheManager.html
https://api.laravel.com/docs/12.x/Illuminate/Config/Repository.html
https://api.laravel.com/docs/12.x/Illuminate/Log/Context/Repository.html
https://api.laravel.com/docs/12.x/Illuminate/Cookie/CookieJar.html
https://api.laravel.com/docs/12.x/Illuminate/Encryption/Encrypter.html
https://api.laravel.com/docs/12.x/Illuminate/Support/DateFactory.html
https://api.laravel.com/docs/12.x/Illuminate/Database/Connection.html
https://api.laravel.com/docs/12.x/Illuminate/Database/DatabaseManager.html

Facade Class Service Container Binding

Event Illuminate\Events\Dispatcher events

Exceptions (Instance) Illuminate\Contracts\Debug\ExceptionHandler

Exceptions Illuminate\Foundation\Exceptions\Handler

File Illuminate\Filesystem\Filesystem files

Gate Illuminate\Contracts\Auth\Access\Gate

Hash Illuminate\Contracts\Hashing\Hasher hash

Http Illuminate\Http\Client\Factory

Lang Illuminate\Translation\Translator translator

Log Illuminate\Log\LogManager log

Mail Illuminate\Mail\Mailer mailer

Notification Illuminate\Notifications\ChannelManager

Password (Instance) Illuminate\Auth\Passwords\PasswordBroker auth.password.broker

Password Illuminate\Auth\Passwords\PasswordBrokerManager auth.password

Pipeline (Instance) Illuminate\Pipeline\Pipeline

Process Illuminate\Process\Factory

Queue (Base Class) Illuminate\Queue\Queue

Queue (Instance) Illuminate\Contracts\Queue\Queue queue.connection

Queue Illuminate\Queue\QueueManager queue

RateLimiter Illuminate\Cache\RateLimiter

Redirect Illuminate\Routing\Redirector redirect

Redis (Instance) Illuminate\Redis\Connections\Connection redis.connection

Redis Illuminate\Redis\RedisManager redis

Request Illuminate\Http\Request request

Response (Instance) Illuminate\Http\Response

Response Illuminate\Contracts\Routing\ResponseFactory

Route Illuminate\Routing\Router router

Schedule Illuminate\Console\Scheduling\Schedule

Schema Illuminate\Database\Schema\Builder

Session (Instance) Illuminate\Session\Store session.store

Session Illuminate\Session\SessionManager session

Storage (Instance) Illuminate\Contracts\Filesystem\Filesystem filesystem.disk

Storage Illuminate\Filesystem\FilesystemManager filesystem

URL Illuminate\Routing\UrlGenerator url

Validator (Instance) Illuminate\Validation\Validator

Validator Illuminate\Validation\Factory validator

View (Instance) Illuminate\View\View

View Illuminate\View\Factory view

Vite Illuminate\Foundation\Vite

69

https://api.laravel.com/docs/12.x/Illuminate/Events/Dispatcher.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Debug/ExceptionHandler.html
https://api.laravel.com/docs/12.x/Illuminate/Foundation/Exceptions/Handler.html
https://api.laravel.com/docs/12.x/Illuminate/Filesystem/Filesystem.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Auth/Access/Gate.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Hashing/Hasher.html
https://api.laravel.com/docs/12.x/Illuminate/Http/Client/Factory.html
https://api.laravel.com/docs/12.x/Illuminate/Translation/Translator.html
https://api.laravel.com/docs/12.x/Illuminate/Log/LogManager.html
https://api.laravel.com/docs/12.x/Illuminate/Mail/Mailer.html
https://api.laravel.com/docs/12.x/Illuminate/Notifications/ChannelManager.html
https://api.laravel.com/docs/12.x/Illuminate/Auth/Passwords/PasswordBroker.html
https://api.laravel.com/docs/12.x/Illuminate/Auth/Passwords/PasswordBrokerManager.html
https://api.laravel.com/docs/12.x/Illuminate/Pipeline/Pipeline.html
https://api.laravel.com/docs/12.x/Illuminate/Process/Factory.html
https://api.laravel.com/docs/12.x/Illuminate/Queue/Queue.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Queue/Queue.html
https://api.laravel.com/docs/12.x/Illuminate/Queue/QueueManager.html
https://api.laravel.com/docs/12.x/Illuminate/Cache/RateLimiter.html
https://api.laravel.com/docs/12.x/Illuminate/Routing/Redirector.html
https://api.laravel.com/docs/12.x/Illuminate/Redis/Connections/Connection.html
https://api.laravel.com/docs/12.x/Illuminate/Redis/RedisManager.html
https://api.laravel.com/docs/12.x/Illuminate/Http/Request.html
https://api.laravel.com/docs/12.x/Illuminate/Http/Response.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Routing/ResponseFactory.html
https://api.laravel.com/docs/12.x/Illuminate/Routing/Router.html
https://api.laravel.com/docs/12.x/Illuminate/Console/Scheduling/Schedule.html
https://api.laravel.com/docs/12.x/Illuminate/Database/Schema/Builder.html
https://api.laravel.com/docs/12.x/Illuminate/Session/Store.html
https://api.laravel.com/docs/12.x/Illuminate/Session/SessionManager.html
https://api.laravel.com/docs/12.x/Illuminate/Contracts/Filesystem/Filesystem.html
https://api.laravel.com/docs/12.x/Illuminate/Filesystem/FilesystemManager.html
https://api.laravel.com/docs/12.x/Illuminate/Routing/UrlGenerator.html
https://api.laravel.com/docs/12.x/Illuminate/Validation/Validator.html
https://api.laravel.com/docs/12.x/Illuminate/Validation/Factory.html
https://api.laravel.com/docs/12.x/Illuminate/View/View.html
https://api.laravel.com/docs/12.x/Illuminate/View/Factory.html
https://api.laravel.com/docs/12.x/Illuminate/Foundation/Vite.html

Hello

70

Middleware

Introduction

Middleware provide a convenient mechanism for inspecting and filtering HTTP requests entering your

application. For example, Laravel includes a middleware that verifies the user of your application is

authenticated. If the user is not authenticated, the middleware will redirect the user to your application's login

screen. However, if the user is authenticated, the middleware will allow the request to proceed further into

the application.

Additional middleware can be written to perform a variety of tasks besides authentication. For example, a

logging middleware might log all incoming requests to your application. A variety of middleware are included

in Laravel, including middleware for authentication and CSRF protection; however, all user-defined

middleware are typically located in your application's app/Http/Middleware directory.

Defining Middleware

To create a new middleware, use the make:middleware Artisan command:

php artisan make:middleware EnsureTokenIsValid

This command will place a new EnsureTokenIsValid class within your app/Http/Middleware

directory. In this middleware, we will only allow access to the route if the supplied token input matches a

specified value. Otherwise, we will redirect the users back to the /home URI:

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class EnsureTokenIsValid

{

 /**

 * Handle an incoming request.

 *

 * @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\

 */

 public function handle(Request $request, Closure $next): Response

 {

 if ($request->input('token') !== 'my-secret-token') {

 return redirect('/home');

 }

 return $next($request);

 }

}

As you can see, if the given token does not match our secret token, the middleware will return an HTTP

redirect to the client; otherwise, the request will be passed further into the application. To pass the request

71

deeper into the application (allowing the middleware to "pass"), you should call the $next callback with the

$request .

It's best to envision middleware as a series of "layers" HTTP requests must pass through before they hit your

application. Each layer can examine the request and even reject it entirely.

All middleware are resolved via the service container, so you may type-hint any dependencies you need within

a middleware's constructor.

Middleware and Responses

Of course, a middleware can perform tasks before or after passing the request deeper into the application. For

example, the following middleware would perform some task before the request is handled by the application:

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class BeforeMiddleware

{

 public function handle(Request $request, Closure $next): Response

 {

 // Perform action

 return $next($request);

 }

}

However, this middleware would perform its task after the request is handled by the application:

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class AfterMiddleware

{

 public function handle(Request $request, Closure $next): Response

 {

 $response = $next($request);

 // Perform action

 return $response;

 }

}

Registering Middleware

72

https://laravel.com/docs/12.x/container

Global Middleware

If you want a middleware to run during every HTTP request to your application, you may append it to the

global middleware stack in your application's bootstrap/app.php file:

use App\Http\Middleware\EnsureTokenIsValid;

$app->middleware([

 EnsureTokenIsValid::class,

]);

Or using the withMiddleware method:

use App\Http\Middleware\EnsureTokenIsValid;

->withMiddleware(function (Middleware $middleware) {

 $middleware->append(EnsureTokenIsValid::class);

})

The $middleware object provided to the withMiddleware closure is an instance of

Illuminate\Foundation\Configuration\Middleware and is responsible for managing the

middleware assigned to your application's routes. The append method adds the middleware to the end of

the list of global middleware. If you wish to add it at the beginning, use prepend .

Manually Managing Laravel's Default Global Middleware

You can specify Laravel's default middleware stack and adjust as necessary:

->withMiddleware(function (Middleware $middleware) {

 $middleware->use([

 \Illuminate\Foundation\Http\Middleware\InvokeDeferredCallbacks::class,

 // \Illuminate\Http\Middleware\TrustHosts::class,

 \Illuminate\Http\Middleware\TrustProxies::class,

 \Illuminate\Http\Middleware\HandleCors::class,

 \Illuminate\Foundation\Http\Middleware\PreventRequestsDuringMaintenance::class

 \Illuminate\Http\Middleware\ValidatePostSize::class,

 \Illuminate\Foundation\Http\Middleware\TrimStrings::class,

 \Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull::class,

]);

})

Assigning Middleware to Routes

To assign middleware to specific routes:

use App\Http\Middleware\EnsureTokenIsValid;

Route::get('/profile', function () {

 // ...

})->middleware(EnsureTokenIsValid::class);

You can assign multiple middleware by passing an array:

Route::get('/', function () {

 // ...

})->middleware([First::class, Second::class]);

73

Excluding Middleware

To prevent middleware from applying to a specific route within a group:

use App\Http\Middleware\EnsureTokenIsValid;

Route::middleware([EnsureTokenIsValid::class])->group(function () {

 Route::get('/', function () {

 // ...

 });

 Route::get('/profile', function () {

 // ...

 })->withoutMiddleware([EnsureTokenIsValid::class]);

});

You may also exclude middleware from an entire route group:

use App\Http\Middleware\EnsureTokenIsValid;

Route::withoutMiddleware([EnsureTokenIsValid::class])->group(function () {

 Route::get('/profile', function () {

 // ...

 });

});

The withoutMiddleware method only removes route middleware, not global middleware.

Middleware Groups

Group multiple middleware under a single key using appendToGroup :

use App\Http\Middleware\First;

use App\Http\Middleware\Second;

->withMiddleware(function (Middleware $middleware) {

 $middleware->appendToGroup('group-name', [

 First::class,

 Second::class,

]);

 $middleware->prependToGroup('group-name', [

 First::class,

 Second::class,

]);

});

Assign middleware groups to routes:

Route::get('/', function () {

 // ...

})->middleware('group-name');

Route::middleware(['group-name'])->group(function () {

 // ...

});

Laravel's Default Middleware Groups

Laravel includes predefined web and api groups:

74

web Middleware Group

Illuminate\Cookie\Middleware\EncryptCookies

Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse

Illuminate\Session\Middleware\StartSession

Illuminate\View\Middleware\ShareErrorsFromSession

Illuminate\Foundation\Http\Middleware\ValidateCsrfToken

Illuminate\Routing\Middleware\SubstituteBindings

api Middleware Group

Illuminate\Routing\Middleware\SubstituteBindings

You can modify these groups using the web and api methods in bootstrap/app.php .

Middleware Aliases

Alias middleware for shorter names:

use App\Http\Middleware\EnsureUserIsSubscribed;

->withMiddleware(function (Middleware $middleware) {

 $middleware->alias([

 'subscribed' => EnsureUserIsSubscribed::class,

]);

});

Use the alias in routes:

Route::get('/profile', function () {

 // ...

})->middleware('subscribed');

Default Laravel aliases include:

Alias Middleware

auth Illuminate\Auth\Middleware\Authenticate

auth.basic Illuminate\Auth\Middleware\AuthenticateWithBasicAuth

auth.session Illuminate\Session\Middleware\AuthenticateSession

cache.headers Illuminate\Http\Middleware\SetCacheHeaders

can Illuminate\Auth\Middleware\Authorize

guest Illuminate\Auth\Middleware\RedirectIfAuthenticated

password.confirm Illuminate\Auth\Middleware\RequirePassword

signed Illuminate\Routing\Middleware\ValidateSignature

subscribed \Spark\Http\Middleware\VerifyBillableIsSubscribed

throttle Illuminate\Routing\Middleware\ThrottleRequests

verified Illuminate\Auth\Middleware\EnsureEmailIsVerified

Sorting Middleware

Specify execution order with the priority method:

->withMiddleware(function (Middleware $middleware) {

 $middleware->priority([

 \Illuminate\Foundation\Http\Middleware\HandlePrecognitiveRequests::class,

 \Illuminate\Cookie\Middleware\EncryptCookies::class,

75

 // ...

 \Illuminate\Routing\Middleware\SubstituteBindings::class,

 \Illuminate\Contracts\Auth\Middleware\AuthenticatesRequests::class,

 \Illuminate\Auth\Middleware\Authorize::class,

]);

})

Middleware Parameters

Middleware can accept additional parameters. Define them separated by : and multiple parameters by

commas.

Example:

use App\Http\Middleware\EnsureUserHasRole;

Route::put('/post/{id}', function (string $id) {

 // ...

})->middleware(EnsureUserHasRole::class.':editor');

Route::put('/post/{id}', function (string $id) {

 // ...

})->middleware(EnsureUserHasRole::class.':editor,publisher');

Middleware receiving parameters:

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class EnsureUserHasRole

{

 /**

 * Handle an incoming request.

 *

 * @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\

 */

 public function handle(Request $request, Closure $next, string $role): Response

 {

 if (! $request->user()->hasRole($role)) {

 // Redirect...

 }

 return $next($request);

 }

}

Terminable Middleware

Middleware may have a terminate method for after-response tasks, automatically called when using

FastCGI:

76

<?php

namespace Illuminate\Session\Middleware;

use Closure;

use Illuminate\Http\Request;

use Symfony\Component\HttpFoundation\Response;

class TerminatingMiddleware

{

 /**

 * Handle an incoming request.

 *

 * @param \Closure(\Illuminate\Http\Request): (\Symfony\Component\HttpFoundation\

 */

 public function handle(Request $request, Closure $next): Response

 {

 return $next($request);

 }

 /**

 * Handle tasks after the response has been sent to the browser.

 */

 public function terminate(Request $request, Response $response): void

 {

 // ...

 }

}

Register it as singleton in your service provider:

$this->app->singleton(TerminatingMiddleware::class);

77

Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

HTTP Session - Laravel 12.x - The PHP Framework For Web Artisans

78

https://example.com/
https://laravel.com/

Hello

79

Error Handling

Introduction

When you start a new Laravel project, error and exception handling is already configured for you; however, at

any point, you may use the withExceptions method in your application's bootstrap/app.php to

manage how exceptions are reported and rendered by your application.

The $exceptions object provided to the withExceptions closure is an instance of

Illuminate\Foundation\Configuration\Exceptions and is responsible for managing exception

handling in your application. We'll dive deeper into this object throughout this documentation.

Configuration

The debug option in your config/app.php configuration file determines how much information about

an error is actually displayed to the user. By default, this option is set to respect the value of the APP_DEBUG

environment variable, which is stored in your .env file.

During local development, you should set the APP_DEBUG environment variable to true . In your

production environment, this value should always be false . If the value is set to true in production,

you risk exposing sensitive configuration values to your application's end users.

Handling Exceptions

Reporting Exceptions

In Laravel, exception reporting is used to log exceptions or send them to an external service like Sentry or

Flare. By default, exceptions will be logged based on your logging configuration. However, you are free to log

exceptions however you wish.

If you need to report different types of exceptions in different ways, you may use the report exception

method in your application's bootstrap/app.php to register a closure that should be executed when an

exception of a given type needs to be reported. Laravel will determine what type of exception the closure

reports by examining the type-hint of the closure:

use App\Exceptions\InvalidOrderException;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->report(function (InvalidOrderException $e) {

 // ...

 });

});

When you register a custom exception reporting callback using the report method, Laravel will still log the

exception using the default logging configuration for the application. If you wish to stop the propagation of the

exception to the default logging stack, you may use the stop method when defining your reporting callback

or return false from the callback:

use App\Exceptions\InvalidOrderException;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->report(function (InvalidOrderException $e) {

80

https://github.com/getsentry/sentry-laravel
https://flareapp.io/
https://laravel.com/docs/12.x/logging

 // ...

 })->stop();

 $exceptions->report(function (InvalidOrderException $e) {

 return false;

 });

});

To customize the exception reporting for a given exception, you may also utilize reportable exceptions.

Global Log Context

If available, Laravel automatically adds the current user's ID to every exception's log message as contextual

data. You may define your own global contextual data using the context exception method in your

application's bootstrap/app.php file. This information will be included in every exception's log message

written by your application:

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->context(fn () => [

 'foo' => 'bar',

]);

});

Exception Log Context

While adding context to every log message can be useful, sometimes a particular exception may have unique

context that you would like to include in your logs. By defining a context method on one of your

application's exceptions, you may specify any data relevant to that exception that should be added to the

exception's log entry:

namespace App\Exceptions;

use Exception;

class InvalidOrderException extends Exception

{

 // ...

 /**

 * Get the exception's context information.

 *

 * @return array<string, mixed>

 */

 public function context(): array

 {

 return ['order_id' => $this->orderId];

 }

}

The report Helper

Sometimes you may need to report an exception but continue handling the current request. The report

helper function allows you to quickly report an exception without rendering an error page to the user:

public function isValid(string $value): bool

{

81

 try {

 // Validate the value...

 } catch (Throwable $e) {

 report($e);

 return false;

 }

}

Deduplicating Reported Exceptions

If you are using the report function throughout your application, you may occasionally report the same

exception multiple times, creating duplicate entries in your logs.

If you would like to ensure that a single instance of an exception is only ever reported once, you may invoke

the dontReportDuplicates exception method in your application's bootstrap/app.php file:

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->dontReportDuplicates();

});

Now, when the report helper is called with the same instance of an exception, only the first call will be

reported:

$original = new RuntimeException('Whoops!');

report($original); // reported

try {

 throw $original;

} catch (Throwable $caught) {

 report($caught); // ignored

}

report($original); // ignored

report($caught); // ignored

Exception Log Levels

When messages are written to your application's logs, the messages are written at a specified log level, which

indicates the severity or importance of the message being logged.

Even when you register a custom exception reporting callback using the report method, Laravel will still

log the exception using the default logging configuration for the application. Since the log level can influence

the channels on which a message is logged, you may wish to configure the log level at which certain

exceptions are logged.

You can specify the log level for an exception type using the level exception method:

use PDOException;

use Psr\Log\LogLevel;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->level(PDOException::class, LogLevel::CRITICAL);

});

Ignoring Exceptions by Type

82

https://laravel.com/docs/12.x/logging
https://laravel.com/docs/12.x/logging#log-levels

When building your application, there will be some types of exceptions you never want to report. To ignore

these exceptions, you may use the dontReport exception method in your application's

bootstrap/app.php file. Any class provided to this method will never be reported; however, they may

still have custom rendering logic:

use App\Exceptions\InvalidOrderException;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->dontReport([

 InvalidOrderException::class,

]);

});

Alternatively, you may simply "mark" an exception class with the

Illuminate\Contracts\Debug\ShouldntReport interface. When an exception is marked with this

interface, it will never be reported by Laravel's exception handler:

namespace App\Exceptions;

use Exception;

use Illuminate\Contracts\Debug\ShouldntReport;

class PodcastProcessingException extends Exception implements ShouldntReport

{

 // ...

}

Laravel already ignores certain errors internally, such as exceptions resulting from 404 HTTP errors or 419

HTTP responses due to invalid CSRF tokens. If you want Laravel to stop ignoring a specific exception type, you

may use the stopIgnoring exception method:

use Symfony\Component\HttpKernel\Exception\HttpException;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->stopIgnoring(HttpException::class);

});

Rendering Exceptions

By default, Laravel's exception handler converts exceptions into an HTTP response. You can register a custom

rendering closure for exceptions of a specific type:

use App\Exceptions\InvalidOrderException;

use Illuminate\Http\Request;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->render(function (InvalidOrderException $e, Request $request) {

 return response()->view('errors.invalid-order', ['status' => 500]);

 });

});

You may also override rendering behavior for built-in Laravel or Symfony exceptions such as

NotFoundHttpException . If the closure does not return a value, Laravel's default exception response is

used:

use Illuminate\Http\Request;

use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;

83

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->render(function (NotFoundHttpException $e, Request $request) {

 if ($request->is('api/*')) {

 return response()->json([

 'message' => 'Record not found.',

], 404);

 }

 });

});

Rendering Exceptions as JSON

Laravel automatically determines whether to render exceptions as HTML or JSON based on the request's

Accept header. To customize this behavior, you can use the shouldRenderJsonWhen method:

use Illuminate\Http\Request;

use Throwable;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->shouldRenderJsonWhen(function (Request $request, Throwable $e) {

 if ($request->is('admin/*')) {

 return true;

 }

 return $request->expectsJson();

 });

});

Customizing the Exception Response

You can customize Laravel's entire exception response by registering a response closure with the respond

method:

use Symfony\Component\HttpFoundation\Response;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->respond(function (Response $response) {

 if ($response->getStatusCode() === 419) {

 return back()->with([

 'message' => 'The page expired, please try again.',

]);

 }

 return $response;

 });

});

Reportable and Renderable Exceptions

Instead of defining behavior in bootstrap/app.php , you can define report and render methods

directly on your exception classes. Laravel will automatically call these methods if they exist:

namespace App\Exceptions;

use Exception;

use Illuminate\Http\Request;

use Illuminate\Http\Response;

84

class InvalidOrderException extends Exception

{

 /**

 * Report the exception.

 */

 public function report(): void

 {

 // ...

 }

 /**

 * Render the exception as an HTTP response.

 */

 public function render(Request $request): Response

 {

 return response(/* ... */);

 }

}

If your exception extends an existing renderable exception (like a Laravel or Symfony exception), you may

return false from its render method to fallback to the default HTTP response:

public function render(Request $request): Response|bool

{

 if (/* Determine if custom rendering is needed */) {

 return response(/* ... */);

 }

 return false;

}

Similarly, if your exception contains custom reporting logic conditioned on certain conditions, you may return

false from the report method to instruct Laravel to proceed with default reporting:

public function report(): bool

{

 if (/* Determine if custom reporting is needed */) {

 // ...

 return true;

 }

 return false;

}

Throttling Reported Exceptions

To limit how often exceptions are logged or sent to external tracking, you can use the throttle method:

use Illuminate\Support\Lottery;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->throttle(function (Throwable $e) {

 return Lottery::odds(1, 1000);

 });

});

You can conditionally sample exceptions based on their type:

85

use App\Exceptions\ApiMonitoringException;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->throttle(function (Throwable $e) {

 if ($e instanceof ApiMonitoringException) {

 return Lottery::odds(1, 1000);

 }

 });

});

You may also rate-limit exceptions using the Limit class, which is useful to prevent flooding logs, especially

during downtime of external services:

use Illuminate\Broadcasting\BroadcastException;

use Illuminate\Cache\RateLimiting\Limit;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->throttle(function (Throwable $e) {

 if ($e instanceof BroadcastException) {

 return Limit::perMinute(300);

 }

 });

});

You can customize the rate limiting key via the by method:

use Illuminate\Broadcasting\BroadcastException;

use Illuminate\Cache\RateLimiting\Limit;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->throttle(function (Throwable $e) {

 if ($e instanceof BroadcastException) {

 return Limit::perMinute(300)->by($e->getMessage());

 }

 });

});

You can combine multiple behaviors for different exception types:

use App\Exceptions\ApiMonitoringException;

use Illuminate\Broadcasting\BroadcastException;

use Illuminate\Cache\RateLimiting\Limit;

use Illuminate\Support\Lottery;

->withExceptions(function (Exceptions $exceptions) {

 $exceptions->throttle(function (Throwable $e) {

 return match (true) {

 $e instanceof BroadcastException => Limit::perMinute(300),

 $e instanceof ApiMonitoringException => Lottery::odds(1, 1000),

 default => Limit::none(),

 };

 });

});

HTTP Exceptions

86

Some exceptions relate to HTTP error codes like 404 (not found), 401 (unauthorized), or 500 (server error). To

generate such responses, you can use the abort helper:

abort(404);

Custom HTTP Error Pages

Laravel allows you to display custom error pages by creating view templates in

resources/views/errors/ . For example, to customize the 404 error page, create 404.blade.php .

This view has access to an $exception variable:

<h2>{{ $exception->getMessage() }}</h2>

You can publish the default error page templates via Artisan:

php artisan vendor:publish --tag=laravel-errors

Fallback HTTP Error Pages

You may define fallback pages like 4xx.blade.php and 5xx.blade.php for HTTP status codes that

don't have specific views. These fallback pages are rendered when no specific error page exists.

Note: These fallback pages do not affect the responses for 404, 500, and 503 since Laravel has dedicated pages

for these codes. For custom pages for these specific errors, create individual templates.

87

Logging

Introduction

To help you learn more about what's happening within your application, Laravel provides robust logging

services that allow you to log messages to files, the system error log, and even to Slack to notify your entire

team.

Laravel logging is based on "channels". Each channel represents a specific way of writing log information. For

example, the single channel writes log files to a single log file, while the slack channel sends log

messages to Slack. Log messages may be written to multiple channels based on their severity.

Under the hood, Laravel utilizes the Monolog library, which provides support for a variety of powerful log

handlers. Laravel makes it a cinch to configure these handlers, allowing you to mix and match them to

customize your application's log handling.

Configuration

All of the configuration options that control your application's logging behavior are housed in the

config/logging.php configuration file. This file allows you to configure your application's log channels,

so be sure to review each of the available channels and their options. We'll review a few common options

below.

By default, Laravel will use the stack channel when logging messages. The stack channel is used to

aggregate multiple log channels into a single channel. For more information on building stacks, check out the

building log stacks documentation below.

Available Channel Drivers

Each log channel is powered by a "driver". The driver determines how and where the log message is actually

recorded. The following log channel drivers are available in every Laravel application. An entry for most of

these drivers is already present in your application's config/logging.php configuration file, so be sure to

review this file to become familiar with its contents:

Name Description

custom A driver that calls a specified factory to create a channel.

daily A RotatingFileHandler based Monolog driver which rotates daily.

errorlog An ErrorLogHandler based Monolog driver.

monolog A Monolog factory driver that may use any supported Monolog handler.

papertrail A SyslogUdpHandler based Monolog driver.

single A single file or path based logger channel (StreamHandler).

slack A SlackWebhookHandler based Monolog driver.

stack A wrapper to facilitate creating "multi-channel" channels.

syslog A SyslogHandler based Monolog driver.

Check out the documentation on advanced channel customization to learn more about the monolog and

custom drivers.

Configuring the Channel Name

88

https://github.com/Seldaek/monolog

By default, Monolog is instantiated with a "channel name" that matches the current environment, such as

production or local . To change this value, you may add a name option to your channel's

configuration:

'stack' => [

 'driver' => 'stack',

 'name' => 'channel-name',

 'channels' => ['single', 'slack'],

],

Channel Prerequisites

Configuring the Single and Daily Channels

The single and daily channels have three optional configuration options: bubble , permission ,

and locking .

Name Description Default

bubble Indicates if messages should bubble up to other channels after being handled. true

locking Attempt to lock the log file before writing to it. false

permission The log file's permissions. 0644

Additionally, the retention policy for the daily channel can be configured via the LOG_DAILY_DAYS

environment variable or by setting the days configuration option:

'days' => 14,

Configuring the Papertrail Channel

The papertrail channel requires host and port configuration options. These may be defined via the

PAPERTRAIL_URL and PAPERTRAIL_PORT environment variables. You can obtain these values from

Papertrail.

Configuring the Slack Channel

The slack channel requires a url configuration option, which can be set via the

LOG_SLACK_WEBHOOK_URL environment variable. This URL should be for an incoming webhook you've

configured for your Slack team.

By default, Slack will only receive logs at the critical level and above; you can adjust this using the

LOG_LEVEL environment variable or by modifying the level configuration option within your Slack log

channel configuration.

Logging Deprecation Warnings

PHP, Laravel, and other libraries often notify their users that some features have been deprecated and will be

removed in a future version. To log these deprecation warnings, you may specify your preferred

deprecations log channel via the LOG_DEPRECATIONS_CHANNEL environment variable or in

config/logging.php :

'deprecations' => [

 'channel' => env('LOG_DEPRECATIONS_CHANNEL', null),

 'trace' => env('LOG_DEPRECATIONS_TRACE', false),

],

Or, you may define a log channel named deprecations . If such a channel exists, it will always be used to

log deprecations:

89

https://help.papertrailapp.com/kb/configuration/configuring-centralized-logging-from-php-apps/#send-events-from-php-app
https://slack.com/apps/A0F7XDUAZ-incoming-webhooks

'channels' => [

 'deprecations' => [

 'driver' => 'single',

 'path' => storage_path('logs/php-deprecation-warnings.log'),

],

],

Building Log Stacks

The stack driver allows you to combine multiple channels into a single log channel. Here's an example

configuration that may be used in production:

'channels' => [

 'stack' => [

 'driver' => 'stack',

 'channels' => ['syslog', 'slack'],

 'ignore_exceptions' => false,

],

 'syslog' => [

 'driver' => 'syslog',

 'level' => env('LOG_LEVEL', 'debug'),

 'facility' => env('LOG_SYSLOG_FACILITY', LOG_USER),

 'replace_placeholders' => true,

],

 'slack' => [

 'driver' => 'slack',

 'url' => env('LOG_SLACK_WEBHOOK_URL'),

 'username' => env('LOG_SLACK_USERNAME', 'Laravel Log'),

 'emoji' => env('LOG_SLACK_EMOJI', ':boom:'),

 'level' => env('LOG_LEVEL', 'critical'),

 'replace_placeholders' => true,

],

],

This configuration shows how the stack channel aggregates syslog and slack . When logging

messages, both channels will be invoked, depending on the message severity and the level thresholds.

Log Levels

On each channel, the level option determines the minimum severity a message must have to be logged by

that channel. Laravel's Monolog supports levels from RFC 5424: emergency, alert, critical, error, warning,

notice, info, debug.

For example, you can log using:

Log::debug('An informational message.');

Log::emergency('The system is down!');

debug messages are the least severe and are logged only if the channel's level is debug or below.

emergency messages are the most severe and will always be logged if the level allows.

Writing Log Messages

You can write logs using the Log facade, which supports multiple levels:

90

use Illuminate\Support\Facades\Log;

Log::emergency($message);

Log::alert($message);

Log::critical($message);

Log::error($message);

Log::warning($message);

Log::notice($message);

Log::info($message);

Log::debug($message);

Example within a controller:

<?php

namespace App\Http\Controllers;

use App\Models\User;

use Illuminate\Support\Facades\Log;

use Illuminate\View\View;

class UserController extends Controller

{

 /**

 * Show the profile for the given user.

 */

 public function show(string $id): View

 {

 Log::info('Showing the user profile for user: {id}', ['id' => $id]);

 return view('user.profile', [

 'user' => User::findOrFail($id)

]);

 }

}

Contextual Information

Additional data can be passed as an array to provide context. This data will be formatted and displayed with

the message:

use Illuminate\Support\Facades\Log;

Log::info('User {id} failed to login.', ['id' => $user->id]);

You can also pass contextual data globally to all subsequent logs using withContext :

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Log;

use Illuminate\Support\Str;

use Symfony\Component\HttpFoundation\Response;

91

class AssignRequestId

{

 /**

 * Handle an incoming request.

 */

 public function handle(Request $request, Closure $next): Response

 {

 $requestId = (string) Str::uuid();

 Log::withContext([

 'request-id' => $requestId

]);

 $response = $next($request);

 $response->headers->set('Request-Id', $requestId);

 return $response;

 }

}

Or, to share context across all channels:

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Log;

use Illuminate\Support\Str;

use Symfony\Component\HttpFoundation\Response;

class AssignRequestId

{

 /**

 * Handle an incoming request.

 */

 public function handle(Request $request, Closure $next): Response

 {

 $requestId = (string) Str::uuid();

 Log::shareContext([

 'request-id' => $requestId

]);

 // ...

 }

}

All classes in the tap array are resolved by the service container, enabling constructor injection.

Writing to Specific Channels

To log to other channels besides the default, use the channel method:

92

use Illuminate\Support\Facades\Log;

Log::channel('slack')->info('Something happened!');

You can also create a custom logging stack at runtime:

Log::stack(['single', 'slack'])->info('Something happened!');

On-Demand Channels

It is possible to create an explicit, one-time channel:

use Illuminate\Support\Facades\Log;

Log::build([

 'driver' => 'single',

 'path' => storage_path('logs/custom.log'),

])->info('Something happened!');

Or, include such a channel in a stack:

use Illuminate\Support\Facades\Log;

$channel = Log::build([

 'driver' => 'single',

 'path' => storage_path('logs/custom.log'),

]);

Log::stack(['slack', $channel])->info('Something happened!');

Monolog Channel Customization

Customizing Monolog for Channels

To get fine-grained control over Monolog instances, you can define a tap class in your channel's

configuration:

'single' => [

 'driver' => 'single',

 'tap' => [App\Logging\CustomizeFormatter::class],

 'path' => storage_path('logs/laravel.log'),

 'level' => env('LOG_LEVEL', 'debug'),

 'replace_placeholders' => true,

],

Create the class with an __invoke method that receives an Illuminate\Log\Logger :

<?php

namespace App\Logging;

use Illuminate\Log\Logger;

use Monolog\Formatter\LineFormatter;

class CustomizeFormatter

93

{

 /**

 * Customize the given logger instance.

 */

 public function __invoke(Logger $logger): void

 {

 foreach ($logger->getHandlers() as $handler) {

 $handler->setFormatter(new LineFormatter(

 '[%datetime%] %channel%.%level_name%: %message% %context% %extra%'

));

 }

 }

}

All tap classes are resolved from the container, supporting dependencies via constructor injection.

Creating Monolog Handler Channels

You can define channels that instantiate specific Monolog handlers with custom options:

'logentries' => [

 'driver' => 'monolog',

 'handler' => Monolog\Handler\SyslogUdpHandler::class,

 'handler_with' => [

 'host' => 'my.logentries.internal.datahubhost.company.com',

 'port' => '10000',

],

],

Monolog Formatters

The default formatter is LineFormatter . You can specify a different formatter with formatter and

formatter_with :

'browser' => [

 'driver' => 'monolog',

 'handler' => Monolog\Handler\BrowserConsoleHandler::class,

 'formatter' => Monolog\Formatter\HtmlFormatter::class,

 'formatter_with' => [

 'dateFormat' => 'Y-m-d',

],

],

If a handler supports its own formatter, you can set 'formatter' => 'default' .

Monolog Processors

You can specify processors that modify messages before logging:

'memory' => [

 'driver' => 'monolog',

 'handler' => Monolog\Handler\StreamHandler::class,

 'handler_with' => [

 'stream' => 'php://stderr',

],

 'processors' => [

94

 Monolog\Processor\MemoryUsageProcessor::class,

 [

 'processor' => Monolog\Processor\PsrLogMessageProcessor::class,

 'with' => ['removeUsedContextFields' => true],

],

],

],

Creating Custom Channels via Factories

For full control, define a custom driver with a via option:

'example-custom-channel' => [

 'driver' => 'custom',

 'via' => App\Logging\CreateCustomLogger::class,

],

Implement the factory class:

<?php

namespace App\Logging;

use Monolog\Logger;

class CreateCustomLogger

{

 /**

 * Create a custom Monolog instance.

 */

 public function __invoke(array $config): Logger

 {

 return new Logger(/* ... */);

 }

}

Tailing Log Messages Using Pail

Pail is a package to tail logs in real time from the command line, supporting all log drivers.

Installation

Requires PHP 8.2+ and the PCNTL extension:

composer require --dev laravel/pail

Usage

Run:

php artisan pail

For verbosity:

95

php artisan pail -v

php artisan pail -vv

Press Ctrl+C to stop.

Filtering Logs

Use options such as:

--filter : e.g., php artisan pail --filter="QueryException"

--message : e.g., php artisan pail --message="User created"

--level : e.g., php artisan pail --level=error

--user : e.g., php artisan pail --user=1

For more options, see the official documentation.

On this page

Introduction

Configuration

Available Channel Drivers

Channel Prerequisites

Logging Deprecation Warnings

Building Log Stacks

Writing Log Messages

Contextual Information

Writing to Specific Channels

Monolog Channel Customization

Customizing Monolog for Channels

Creating Monolog Handler Channels

Creating Custom Channels via Factories

Tailing Log Messages Using Pail

96

CSRF Protection

Introduction

Cross-site request forgeries are a type of malicious exploit whereby unauthorized commands are performed

on behalf of an authenticated user. Thankfully, Laravel makes it easy to protect your application from cross-

site request forgery (CSRF) attacks.

An Explanation of the Vulnerability

In case you're not familiar with cross-site request forgeries, let's discuss an example of how this vulnerability

can be exploited. Imagine your application has a /user/email route that accepts a POST request to

change the authenticated user's email address. Most likely, this route expects an email input field to

contain the email address the user would like to begin using.

Without CSRF protection, a malicious website could create an HTML form that points to your application's

/user/email route and submits the malicious user's own email address:

<form action="https://your-application.com/user/email" method="POST">

 <input type="email" value="user@example.com">

</form>

<script>

 document.forms[0].submit();

</script>

If the malicious website automatically submits the form when the page is loaded, the malicious user only

needs to lure an unsuspecting user of your application to visit their website and their email address will be

changed in your application.

To prevent this vulnerability, we need to inspect every incoming POST , PUT , PATCH , or DELETE

request for a secret session value that the malicious application is unable to access.

Preventing CSRF Requests

Laravel automatically generates a CSRF "token" for each active user session. This token is used to verify that

the authenticated user is the person actually making the requests to the application. Since this token is stored

in the user's session and changes each time the session is regenerated, a malicious application is unable to

access it.

The current session's CSRF token can be accessed via the request's session or via the csrf_token helper

function:

use Illuminate\Http\Request;

Route::get('/token', function (Request $request) {

 $token = $request->session()->token();

 $token = csrf_token();

 // ...

});

97

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Anytime you define a POST , PUT , PATCH , or DELETE HTML form in your application, you should

include a hidden CSRF _token field in the form so that the CSRF protection middleware can validate the

request. For convenience, you may use the @csrf Blade directive to generate the hidden token input field:

<form method="POST" action="/profile">

 @csrf

 <!-- Equivalent to... -->

 <input type="hidden" name="_token" value="{{ csrf_token() }}" />

</form>

The Illuminate\Foundation\Http\Middleware\ValidateCsrfToken middleware, which is

included in the web middleware group by default, will automatically verify that the token in the request input

matches the token stored in the session. When these two tokens match, we know that the authenticated user is

the one initiating the request.

CSRF Tokens & SPAs

If you are building an SPA that is utilizing Laravel as an API backend, you should consult the Laravel Sanctum

documentation for information on authenticating with your API and protecting against CSRF vulnerabilities.

Excluding URIs From CSRF Protection

Sometimes you may wish to exclude a set of URIs from CSRF protection. For example, if you are using Stripe to

process payments and are utilizing their webhook system, you will need to exclude your Stripe webhook

handler route from CSRF protection since Stripe will not know what CSRF token to send to your routes.

Typically, you should place these kinds of routes outside of the web middleware group that Laravel applies to

all routes in the routes/web.php file. However, you may also exclude specific routes by providing their

URIs to the validateCsrfTokens method in your application's bootstrap/app.php file:

->withMiddleware(function (Middleware $middleware) {

 $middleware->validateCsrfTokens(except: [

 'stripe/*',

 'http://example.com/foo/bar',

 'http://example.com/foo/*',

]);

})

For convenience, the CSRF middleware is automatically disabled for all routes when running tests.

X-CSRF-TOKEN

In addition to checking for the CSRF token as a POST parameter, the

Illuminate\Foundation\Http\Middleware\ValidateCsrfToken middleware, which is included in

the web middleware group by default, will also check for the X-CSRF-TOKEN request header. You could,

for example, store the token in an HTML meta tag:

<meta name="csrf-token" content="{{ csrf_token() }}">

Then, you can instruct a library like jQuery to automatically add the token to all request headers. This

provides simple, convenient CSRF protection for your AJAX based applications using legacy JavaScript

technology:

$.ajaxSetup({

 headers: {

 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')

98

https://stripe.com/

 }

});

X-XSRF-TOKEN

Laravel stores the current CSRF token in an encrypted XSRF-TOKEN cookie that is included with each

response generated by the framework. You can use the cookie value to set the X-XSRF-TOKEN request

header.

This cookie is primarily sent as a developer convenience since some JavaScript frameworks and libraries, like

Angular and Axios, automatically place its value in the X-XSRF-TOKEN header on same-origin requests.

By default, the resources/js/bootstrap.js file includes the Axios HTTP library which will

automatically send the X-XSRF-TOKEN header for you.

99

Controllers

Introduction

Instead of defining all of your request handling logic as closures in your route files, you may wish to organize

this behavior using controller classes. Controllers can group related request handling logic into a single class.

For example, a UserController class might handle all incoming requests related to users, including

showing, creating, updating, and deleting users. By default, controllers are stored in the

app/Http/Controllers directory.

Writing Controllers

Basic Controllers

To quickly generate a new controller, you may run the make:controller Artisan command. By default, all

of the controllers for your application are stored in the app/Http/Controllers directory:

php artisan make:controller UserController

Example of a basic controller

A controller may have any number of public methods which will respond to incoming HTTP requests:

<?php

namespace App\Http\Controllers;

use App\Models\User;

use Illuminate\View\View;

class UserController extends Controller

{

 /**

 * Show the profile for a given user.

 */

 public function show(string $id): View

 {

 return view('user.profile', [

 'user' => User::findOrFail($id)

]);

 }

}

Defining a route to a controller method

Once you have written a controller class and method, you may define a route to the controller method like so:

use App\Http\Controllers\UserController;

Route::get('/user/{id}', [UserController::class, 'show']);

100

When an incoming request matches the specified route URI, the show method on the

App\Http\Controllers\UserController class will be invoked and the route parameters will be

passed to the method.

Controllers are not required to extend a base class. However, it is sometimes convenient to extend a base

controller class that contains methods that should be shared across all of your controllers.

Single Action Controllers

If a controller action is particularly complex, you might find it convenient to dedicate an entire controller class

to that single action. To accomplish this, you may define a single __invoke method within the controller:

<?php

namespace App\Http\Controllers;

class ProvisionServer extends Controller

{

 /**

 * Provision a new web server.

 */

 public function __invoke()

 {

 // ...

 }

}

When registering routes for single action controllers, you do not need to specify a controller method. Instead,

you may simply pass the name of the controller to the router:

use App\Http\Controllers\ProvisionServer;

Route::post('/server', ProvisionServer::class);

You may generate an invokable controller by using the --invokable option of the make:controller

Artisan command:

php artisan make:controller ProvisionServer --invokable

Controller stubs may be customized using stub publishing.

Controller Middleware

Middleware may be assigned to the controller's routes in your route files:

use App\Http\Controllers\UserController;

Route::get('/profile', [UserController::class, 'show'])->middleware('auth');

Or, you may find it convenient to specify middleware within your controller class. To do so, your controller

should implement the HasMiddleware interface, which dictates that the controller should have a static

middleware method. From this method, you may return an array of middleware that should be applied to

the controller's actions:

<?php

namespace App\Http\Controllers;

101

https://laravel.com/docs/12.x/artisan#stub-customization

use Illuminate\Routing\Controllers\HasMiddleware;

use Illuminate\Routing\Controllers\Middleware;

class UserController extends Controller implements HasMiddleware

{

 /**

 * Get the middleware that should be assigned to the controller.

 */

 public static function middleware(): array

 {

 return [

 'auth',

 new Middleware('log', only: ['index']),

 new Middleware('subscribed', except: ['store']),

];

 }

 // ...

}

You may also define controller middleware as closures, which provides a convenient way to define an inline

middleware without writing an entire middleware class:

<?php

use Closure;

use Illuminate\Http\Request;

/**

 * Get the middleware that should be assigned to the controller.

 */

public static function middleware(): array

{

 return [

 function (Request $request, Closure $next) {

 return $next($request);

 },

];

}

Resource Controllers

If you think of each Eloquent model in your application as a "resource", it is typical to perform the same sets of

actions against each resource in your application. For example, imagine your application contains a Photo

model and a Movie model. It is likely that users can create, read, update, or delete these resources.

Because of this common use case, Laravel resource routing assigns the typical create, read, update, and delete

("CRUD") routes to a controller with a single line of code. To get started, we can use the make:controller

Artisan command's --resource option to quickly create a controller to handle these actions:

php artisan make:controller PhotoController --resource

This command will generate a controller at app/Http/Controllers/PhotoController.php . The

controller will contain a method for each of the available resource operations. Next, you may register a

resource route that points to the controller:

102

use App\Http\Controllers\PhotoController;

Route::resource('photos', PhotoController::class);

This single route declaration creates multiple routes to handle a variety of actions on the resource. The

generated controller will already have methods stubbed for each of these actions. Remember, you can always

get a quick overview of your application's routes by running the route:list Artisan command.

You may even register many resource controllers at once by passing an array to the resources method:

use App\Http\Controllers\PhotoController;

use App\Http\Controllers\PostController;

Route::resources([

 'photos' => PhotoController::class,

 'posts' => PostController::class,

]);

Actions Handled by Resource Controllers

Verb URI Action Route Name

GET /photos index photos.index

GET /photos/create create photos.create

POST /photos store photos.store

GET /photos/{photo} show photos.show

GET /photos/{photo}/edit edit photos.edit

PUT/PATCH /photos/{photo} update photos.update

DELETE /photos/{photo} destroy photos.destroy

Customizing Missing Model Behavior

Typically, a 404 HTTP response will be generated if an implicitly bound resource model is not found. However,

you may customize this behavior by calling the missing method when defining your resource route. The

missing method accepts a closure that will be invoked if an implicitly bound model cannot be found for

any of the resource's routes:

use App\Http\Controllers\PhotoController;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Redirect;

Route::resource('photos', PhotoController::class)

 ->missing(function (Request $request) {

 return Redirect::route('photos.index');

 });

Soft Deleted Models

Typically, implicit model binding will not retrieve models that have been soft deleted, and will instead return a

404 HTTP response. However, you can instruct the framework to allow soft deleted models by invoking the

withTrashed method when defining your resource route:

use App\Http\Controllers\PhotoController;

Route::resource('photos', PhotoController::class)->withTrashed();

103

https://laravel.com/docs/12.x/eloquent#soft-deleting

Calling withTrashed() with no arguments will allow soft deleted models for the show , edit , and

update resource routes. You may specify a subset of these routes by passing an array to the

withTrashed method:

Route::resource('photos', PhotoController::class)->withTrashed(['show']);

Specifying the Resource Model

If you are using route model binding and would like the resource controller's methods to type-hint a model

instance, you may use the --model option when generating the controller:

php artisan make:controller PhotoController --model=Photo --resource

Generating Form Requests

You may provide the --requests option when generating a resource controller to instruct Artisan to

generate form request classes for the controller's storage and update methods:

php artisan make:controller PhotoController --model=Photo --resource --requests

Partial Resource Routes

When declaring a resource route, you may specify a subset of actions the controller should handle instead of

the full set of default actions:

use App\Http\Controllers\PhotoController;

Route::resource('photos', PhotoController::class)->only([

 'index', 'show'

]);

Route::resource('photos', PhotoController::class)->except([

 'create', 'store', 'update', 'destroy'

]);

API Resource Routes

When declaring resource routes that will be consumed by APIs, you will commonly want to exclude routes

that present HTML templates such as create and edit . For convenience, you may use the

apiResource method to automatically exclude these two routes:

use App\Http\Controllers\PhotoController;

Route::apiResource('photos', PhotoController::class);

You may register many API resource controllers at once by passing an array to the apiResources method:

use App\Http\Controllers\PhotoController;

use App\Http\Controllers\PostController;

Route::apiResources([

 'photos' => PhotoController::class,

 'posts' => PostController::class,

]);

104

https://laravel.com/docs/12.x/routing#route-model-binding
https://laravel.com/docs/12.x/validation#form-request-validation

To quickly generate an API resource controller that does not include the create or edit methods, use

the --api switch:

php artisan make:controller PhotoController --api

Nested Resources

Sometimes you may need to define routes to a nested resource. For example, a photo resource may have

multiple comments. To nest resource controllers, you can use "dot" notation:

use App\Http\Controllers\PhotoCommentController;

Route::resource('photos.comments', PhotoCommentController::class);

This route will register a nested resource accessible with URIs like:

/photos/{photo}/comments/{comment}

Scoping Nested Resources

Laravel's implicit model binding can automatically scope nested bindings so that the resolved child model

belongs to the parent. Use the scoped method:

use App\Http\Controllers\PhotoCommentController;

Route::resource('photos.comments', PhotoCommentController::class)->scoped([

 'comment' => 'slug',

]);

This will register a scoped nested resource accessible via:

/photos/{photo}/comments/{comment:slug}

When using a custom keyed implicit binding, Laravel will try to scope the nested query—for example,

assuming comments is a relationship on Photo .

Localizing Resource URIs

By default, Route::resource creates URIs with English verbs. To localize create and edit , use

Route::resourceVerbs() in your App\Providers\AppServiceProvider :

public function boot(): void

{

 Route::resourceVerbs([

 'create' => 'crear',

 'edit' => 'editar',

]);

}

Laravel's pluralizer supports languages supported for pluralization.

Supplementing Resource Controllers

Add routes outside of the default resource set by defining those routes before your Route::resource()

call to prevent conflicts:

105

https://laravel.com/docs/12.x/routing#implicit-model-binding-scoping
https://laravel.com/docs/12.x/localization#pluralization-language

use App\Http\Controllers\PhotoController;

Route::get('/photos/popular', [PhotoController::class, 'popular']);

Route::resource('photos', PhotoController::class);

Singleton Resource Controllers

Some resources are singleton—only one instance exists (e.g., user profile). Register a singleton resource

controller:

use App\Http\Controllers\ProfileController;

use Illuminate\Support\Facades\Route;

Route::singleton('profile', ProfileController::class);

This registers routes like:

Verb URI Action Route Name

GET /profile show profile.show

GET /profile/edit edit profile.edit

PUT/PATCH /profile update profile.update

Singleton resources can be nested:

Route::singleton('photos.thumbnail', ThumbnailController::class);

Routes will be similar but scoped, e.g.:

/photos/{photo}/thumbnail

Additional options, like allowing creation or destruction, are available via methods like creatable() ,

destroyable() , etc.

API Singleton Resources

Register via apiSingleton() :

Route::apiSingleton('profile', ProfileController::class);

They can also be made creatable:

Route::apiSingleton('photos.thumbnail', ProfileController::class)->creatable();

Middleware and Resource Controllers

Assign middleware globally or per action:

Middleware for all actions

use App\Http\Controllers\UserController;

Route::resource('users', UserController::class)

 ->middleware(['auth', 'verified']);

106

Route::singleton('profile', ProfileController::class)

 ->middleware('auth');

Middleware for specific methods

Route::resource('users', UserController::class)

 ->middlewareFor('show', 'auth');

Route::apiResource('users', UserController::class)

 ->middlewareFor(['show', 'update'], 'auth');

In combination with singleton controllers:

Route::singleton('profile', ProfileController::class)

 ->middlewareFor('show', 'auth');

Route::apiSingleton('profile', ProfileController::class)

 ->middlewareFor(['show', 'update'], 'auth');

Excluding middleware on methods

Route::middleware(['auth', 'verified', 'subscribed'])->group(function () {

 Route::resource('users', UserController::class)

 ->withoutMiddlewareFor('index', ['auth', 'verified'])

 ->withoutMiddlewareFor(['create', 'store'], 'verified')

 ->withoutMiddlewareFor('destroy', 'subscribed');

});

Dependency Injection and Controllers

Constructor Injection

Type-hint dependencies in the constructor; Laravel's container resolves and injects them:

<?php

namespace App\Http\Controllers;

use App\Repositories\UserRepository;

class UserController extends Controller

{

 /**

 * Create a new controller instance.

 */

 public function __construct(protected UserRepository $users)

 {

 // ...

 }

}

Method Injection

Type-hint dependencies on methods; e.g., the Request object:

107

<?php

namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;

use Illuminate\Http\Request;

class UserController extends Controller

{

 public function store(Request $request): RedirectResponse

 {

 $name = $request->name;

 // Store the user...

 return redirect('/users');

 }

}

Method injection also supports route parameters:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;

class UserController extends Controller

{

 public function update(Request $request, string $id): RedirectResponse

 {

 // Update the user...

 return redirect('/users');

 }

}

108

Hello

109

Hello

110

Hello

Hello

Hello

Hello

Hello

Hello

Hello

`console.log("Hello")`

[Hello](https://example.com)

![Hello](https://example.com/image.png)

- Hello

- World

1. Hello

2. World

| Hello | World |

| --- | --- |

```console.log("Hello")```

[Hello](https://example.com)

111



Hello

112



Asset Bundling (Vite) - Laravel 12.x -
The PHP Framework For Web
Artisans

113



URL Generation

Introduction

Laravel provides several helpers to assist you in generating URLs for your application. These helpers are

primarily helpful when building links in your templates and API responses, or when generating redirect

responses to another part of your application.

The Basics

Generating URLs

The url  helper may be used to generate arbitrary URLs for your application. The generated URL will

automatically use the scheme (HTTP or HTTPS) and host from the current request being handled by the

application:

$post = App\Models\Post::find(1);

echo url("/posts/{$post->id}");

// http://example.com/posts/1

To generate a URL with query string parameters, you may use the query  method:

echo url()->query('/posts', ['search' => 'Laravel']);

// https://example.com/posts?search=Laravel

echo url()->query('/posts?sort=latest', ['search' => 'Laravel']);

// http://example.com/posts?sort=latest&search=Laravel

Providing query string parameters that already exist in the path will overwrite their existing value:

echo url()->query('/posts?sort=latest', ['sort' => 'oldest']);

// http://example.com/posts?sort=oldest

Arrays of values may also be passed as query parameters. These values will be properly keyed and encoded in

the generated URL:

$url = url()->query('/posts', ['columns' => ['title', 'body']]);

// http://example.com/posts?columns%5B0%5D=title&columns%5B1%5D=body

echo urldecode($url);

// http://example.com/posts?columns[0]=title&columns[1]=body

Accessing the Current URL

If no path is provided to the url  helper, an Illuminate\Routing\UrlGenerator  instance is

returned, allowing you to access information about the current URL:

// Get the current URL without the query string...

echo url()->current();

// Get the current URL including the query string...

echo url()->full();

114



// Get the full URL for the previous request...

echo url()->previous();

// Get the path for the previous request...

echo url()->previousPath();

Each of these methods may also be accessed via the URL  facade:

use Illuminate\Support\Facades\URL;

echo URL::current();

URLs for Named Routes

The route  helper may be used to generate URLs to named routes. Named routes allow you to generate

URLs without being coupled to the actual URL defined on the route. For example:

Route::get('/post/{post}', function (Post $post) {

    // ...

})->name('post.show');

To generate a URL to this route, you may use:

echo route('post.show', ['post' => 1]);

// http://example.com/post/1

Routes with multiple parameters:

Route::get('/post/{post}/comment/{comment}', function (Post $post, Comment $comment) {

    // ...

})->name('comment.show');

echo route('comment.show', ['post' => 1, 'comment' => 3]);

// http://example.com/post/1/comment/3

Additional parameters that do not match route parameters will be added as query string parameters:

echo route('post.show', ['post' => 1, 'search' => 'rocket']);

// http://example.com/post/1?search=rocket

Eloquent Models

Often, URLs are generated using an Eloquent model's route key. You can pass models directly, and the helper

will extract the route key:

echo route('post.show', ['post' => $post]);

Signed URLs

Laravel allows you to create signed URLs. These URLs include a "signature" hash to verify the URL has not

been tampered with:

use Illuminate\Support\Facades\URL;

return URL::signedRoute('unsubscribe', ['user' => 1]);

115

https://laravel.com/docs/12.x/routing#named-routes


// or without domain

return URL::signedRoute('unsubscribe', ['user' => 1], ['absolute' => false]);

To generate a temporary signed route that expires after a specified time:

use Illuminate\Support\Facades\URL;

return URL::temporarySignedRoute(

    'unsubscribe', now()->addMinutes(30), ['user' => 1]

);

Validating Signed Routes

You can verify the signature in a request:

use Illuminate\Http\Request;

Route::get('/unsubscribe/{user}', function (Request $request) {

    if (!$request->hasValidSignature()) {

        abort(401);

    }

    // ...

})->name('unsubscribe');

You can ignore certain query parameters during validation:

if (!$request->hasValidSignatureWhileIgnoring(['page', 'order'])) {

    abort(401);

}

Middleware for Signed URLs

Apply middleware to routes for automatic validation:

Route::post('/unsubscribe/{user}', function (Request $request) {

    // ...

})->name('unsubscribe')->middleware('signed');

For URLs without domains:

Route::post('/unsubscribe/{user}', function (Request $request) {

    // ...

})->name('unsubscribe')->middleware('signed:relative');

Handling Invalid Signed Routes

Customize responses for expired or invalid signatures:

use Illuminate\Routing\Exceptions\InvalidSignatureException;

->withExceptions(function ($exceptions) {

    $exceptions->render(function (InvalidSignatureException $e) {

        return response()->view('errors.link-expired', [], 403);

    });

});

116



URLs for Controller Actions

The action  function generates URLs for controller methods:

use App\Http\Controllers\HomeController;

$url = action([HomeController::class, 'index']);

$url = action([UserController::class, 'profile'], ['id' => 1]);

Fluent URI Objects

Laravel s̓ Uri  class provides a fluent interface for creating and manipulating URIs:

use Illuminate\Support\Uri;

use App\Http\Controllers\UserController;

use App\Http\Controllers\InvokableController;

// Create from string

$uri = Uri::of('https://example.com/path');

// From paths or routes

$uri = Uri::to('/dashboard');

$uri = Uri::route('users.show', ['user' => 1]);

$uri = Uri::signedRoute('users.show', ['user' => 1]);

$uri = Uri::temporarySignedRoute('user.index', now()->addMinutes(5));

$uri = Uri::action([UserController::class, 'index']);

$uri = Uri::action(InvokableController::class);

// From current request

$uri = $request->uri();

Once created, URIs can be modified fluently:

$uri = Uri::of('https://example.com')

    ->withScheme('http')

    ->withHost('test.com')

    ->withPort(8000)

    ->withPath('/users')

    ->withQuery(['page' => 2])

    ->withFragment('section-1');

For more information, see URI documentation.

Default Values

You can set default URL parameters, such as locale, to be used automatically:

// Example of route with locale parameter

Route::get('/{locale}/posts', function () {

    // ...

})->name('post.index');

To avoid passing locale  explicitly each time, you can set defaults:

117

https://laravel.com/docs/12.x/helpers#uri


// Middleware to set default URL parameters

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\URL;

class SetDefaultLocaleForUrls

{

    public function handle(Request $request, Closure $next)

    {

        URL::defaults(['locale' => $request->user()->locale]);

        return $next($request);

    }

}

Middleware Priority

Ensure your middleware runs before Laravel's default SubstituteBindings :

// In bootstrap/app.php

->withMiddleware(function ($middleware) {

    $middleware->prependToPriorityList(

        before: \Illuminate\Routing\Middleware\SubstituteBindings::class,

        prepend: \App\Http\Middleware\SetDefaultLocaleForUrls::class,

    );

});

118



Hello

119



Hello

120



Hello

121



Hello

122



Hello

123



Hello

124



Package Development

Introduction

Packages are the primary way of adding functionality to Laravel. Packages might be anything from a great way

to work with dates like Carbon or a package that allows you to associate files with Eloquent models like Spatie's

Laravel Media Library.

There are different types of packages. Some packages are stand-alone, meaning they work with any PHP

framework. Carbon and Pest are examples of stand-alone packages. Any of these packages may be used with

Laravel by requiring them in your composer.json  file.

On the other hand, other packages are specifically intended for use with Laravel. These packages may have

routes, controllers, views, and configuration specifically to enhance a Laravel application. This guide

primarily covers the development of Laravel-specific packages.

A Note on Facades

When writing a Laravel application, it generally does not matter if you use contracts or facades since both

provide essentially equal levels of testability. However, when developing packages, your package will not

typically have access to all of Laravel's testing helpers. If you want to test your package as if installed inside a

typical Laravel app, you may use the Orchestral Testbench package.

Package Discovery

A Laravel application's bootstrap/providers.php  contains the list of service providers Laravel loads.

Instead of requiring manual addition, you can specify the provider in the extra  section of your package's

composer.json  so Laravel loads it automatically.

To do this, add to your composer.json :

"extra": {

    "laravel": {

        "providers": [

            "Barryvdh\\Debugbar\\ServiceProvider"

        ],

        "aliases": {

            "Debugbar": "Barryvdh\\Debugbar\\Facade"

        }

    }

}

Once configured, Laravel will automatically register these when your package is installed, streamlining user

setup.

Opting Out of Package Discovery

If you want to disable discovery for a specific package, add the package name to the dont-discover  array

in your app's composer.json :

"extra": {

    "laravel": {

        "dont-discover": [

125

https://github.com/briannesbitt/Carbon
https://github.com/spatie/laravel-medialibrary
https://github.com/orchestral/testbench


            "barryvdh/laravel-debugbar"

        ]

    }

}

To disable discovery for all packages, use "*" :

"extra": {

    "laravel": {

        "dont-discover": [

            "*"

        ]

    }

}

Service Providers

Service providers act as the connection point between your package and Laravel. They bind resources into

Laravel s̓ service container and load views, configs, and language files.

A service provider extends Illuminate\Support\ServiceProvider  and implements register  and

boot  methods. The base class is in the illuminate/support  package—you should include it as a

dependency. For more details, see their documentation.

Resources

Configuration

Publish your package's config file to Laravel s̓ config  directory with $this->publishes()  in your

provider's boot  method:

public function boot(): void

{

    $this->publishes([

        __DIR__.'/../config/courier.php' => config_path('courier.php'),

    ]);

}

Users can then run php artisan vendor:publish  to copy config file for customization. Access config

values normally via config('courier.option') .

Note: Avoid defining closures in config files, as they cannot be serialized when caching.

Default Package Configuration

Use mergeConfigFrom()  in your provider's register  method to merge default config:

public function register(): void

{

    $this->mergeConfigFrom(

        __DIR__.'/../config/courier.php', 'courier'

    );

}

126

https://laravel.com/docs/12.x/providers


This merges only the first level of the array. Partial multilevel arrays require manual merging for nested

options.

Routes

If your package has routes, load them with $this->loadRoutesFrom()  in boot() :

public function boot(): void

{

    $this->loadRoutesFrom(__DIR__.'/../routes/web.php');

}

Migrations

Publish migrations with $this->publishesMigrations()  in boot() :

public function boot(): void

{

    $this->publishesMigrations([

        __DIR__.'/../database/migrations' => database_path('migrations'),

    ]);

}

Laravel will update timestamps upon publish.

Language Files

To load translations, in boot() :

public function boot(): void

{

    $this->loadTranslationsFrom(__DIR__.'/../lang', 'courier');

}

Package translation lines are accessed via package::file.line , e.g.,

trans('courier::messages.welcome') .

For JSON translations:

public function boot(): void

{

    $this->loadJsonTranslationsFrom(__DIR__.'/../lang');

}

Publish language files to lang/vendor/courier :

public function boot(): void

{

    $this->loadTranslationsFrom(__DIR__.'/../lang', 'courier');

    $this->publishes([

        __DIR__.'/../lang' => $this->app->langPath('vendor/courier'),

    ]);

}

Views

127



Register views with $this->loadViewsFrom() :

public function boot(): void

{

    $this->loadViewsFrom(__DIR__.'/../resources/views', 'courier');

}

Use package::view  syntax; e.g., view('courier::dashboard') .

To override views, place customized ones in resources/views/vendor/courier/ . Laravel prefers

vendor views in this directory when publishing.

Publish views:

public function boot(): void

{

    $this->loadViewsFrom(__DIR__.'/../resources/views', 'courier');

    $this->publishes([

        __DIR__.'/../resources/views' => resource_path('views/vendor/courier'),

    ]);

}

View Components

Register Blade components in boot() :

public function boot(): void

{

    Blade::component('package-alert', AlertComponent::class);

}

Use <x-package-alert />  in views.

Autoloading Components

Use componentNamespace()  for auto-loaded components in a namespace:

public function boot(): void

{

    Blade::componentNamespace('Nightshade\\Views\\Components', 'nightshade');

}

Using <x-nightshade::calendar />  or <x-nightshade::color-picker /> .

Anonymous Components

Place anonymous components in components  directory within your views folder; reference via

package::view .

"About" Artisan Command

Laravel s̓ about  command displays environment info. You can add package info via AboutCommand .

In your provider's boot() :

128



use Illuminate\Foundation\Console\AboutCommand;

public function boot(): void

{

    AboutCommand::add('My Package', fn () => ['Version' => '1.0.0']);

}

Commands

Register Artisan commands with $this->commands()  in boot() :

public function boot(): void

{

    if ($this->app->runningInConsole()) {

        $this->commands([

            InstallCommand::class,

            NetworkCommand::class,

        ]);

    }

}

Optimize Commands

Register commands to run with php artisan optimize :

public function boot(): void

{

    if ($this->app->runningInConsole()) {

        $this->optimizes(

            optimize: 'package:optimize',

            clear: 'package:clear-optimizations'

        );

    }

}

Public Assets

Publish assets like JS, CSS, images with $this->publishes() :

public function boot(): void

{

    $this->publishes([

        __DIR__.'/../public' => public_path('vendor/courier'),

    ], 'public');

}

Publish with --tag=public --force  to overwrite existing:

php artisan vendor:publish --tag=public --force

Publishing File Groups

Publish assets/resources separately using tags, e.g., to publish config and migrations:

129



public function boot(): void

{

    $this->publishes([

        __DIR__.'/../config/package.php' => config_path('package.php'),

    ], 'courier-config');

    $this->publishes([

        __DIR__.'/../database/migrations/' => database_path('migrations'),

    ], 'courier-migrations');

}

Publish by tags:

php artisan vendor:publish --tag=courier-config

Publish all associated files from provider with:

php artisan vendor:publish --provider="Your\Package\ServiceProvider"

130



Processes

Introduction

Laravel provides an expressive, minimal API around the Symfony Process component, allowing you to

conveniently invoke external processes from your Laravel application. Laravel's process features are focused

on the most common use cases and a wonderful developer experience.

Invoking Processes

To invoke a process, you may use the run  and start  methods offered by the Process  facade. The

run  method will invoke a process and wait for it to finish executing, while start  is used for

asynchronous execution. We'll examine both approaches.

Basic Synchronous Process

First, to run a basic, synchronous process and inspect its result:

use Illuminate\Support\Facades\Process;

$result = Process::run('ls -la');

return $result->output();

The Process::run()  method returns an instance of

Illuminate\Contracts\Process\ProcessResult , which provides helpful methods:

$result = Process::run('ls -la');

$result->successful();

$result->failed();

$result->exitCode();

$result->output();

$result->errorOutput();

Throwing Exceptions on Failure

You can have the process throw an exception if it fails by using throw  or throwIf :

$result = Process::run('ls -la')->throw();

$result = Process::run('ls -la')->throwIf($condition);

Process Options

You can customize process behavior before invoking it using various methods:

Working Directory Path

Specify the working directory:

131

https://symfony.com/doc/current/components/process.html


$result = Process::path(__DIR__)->run('ls -la');

Input

Provide input via standard input:

$result = Process::input('Hello World')->run('cat');

Timeouts

Set a timeout (default is 60 seconds):

$result = Process::timeout(120)->run('bash import.sh');

To disable timeout:

$result = Process::forever()->run('bash import.sh');

Set idle timeout (max seconds without output):

$result = Process::timeout(60)->idleTimeout(30)->run('bash import.sh');

Environment Variables

Provide environment variables:

$result = Process::forever()

    ->env(['IMPORT_PATH' => __DIR__])

    ->run('bash import.sh');

To remove an inherited variable, set it to false :

$result = Process::forever()

    ->env(['LOAD_PATH' => false])

    ->run('bash import.sh');

TTY Mode

Enable TTY mode (connect process input/output directly):

Process::forever()->tty()->run('vim');

Process Output

Access output via output()  and errorOutput() :

$result = Process::run('ls -la');

echo $result->output();

echo $result->errorOutput();

Real-Time Output with Callback

Gather output in real-time with a closure:

132



$results = Process::run('ls -la', function (string $type, string $output) {

    echo $output;

});

Output Matching

Check if output contains a string:

if (Process::run('ls -la')->seeInOutput('laravel')) {

    // ...

}

Disable Output Gathering

Prevent memory use by disabling output:

$result = Process::quietly()->run('bash import.sh');

Pipelines

Make the output of one process the input of another:

use Illuminate\Process\Pipe;

use Illuminate\Support\Facades\Process;

$result = Process::pipe(function (Pipe $pipe) {

    $pipe->command('cat example.txt');

    $pipe->command('grep -i "laravel"');

});

if ($result->successful()) {

    // ...

}

Or, pass command strings directly:

$result = Process::pipe([

    'cat example.txt',

    'grep -i "laravel"',

]);

Real-Time Output in Pipelines

Use a closure:

$result = Process::pipe(function (Pipe $pipe) {

    $pipe->command('cat example.txt');

    $pipe->command('grep -i "laravel"');

}, function (string $type, string $output) {

    echo $output;

});

Named Processes in Pipeline

Assign string keys to processes:

133



$result = Process::pipe(function (Pipe $pipe) {

    $pipe->as('first')->command('cat example.txt');

    $pipe->as('second')->command('grep -i "laravel"');

})->start(function (string $type, string $output, string $key) {

    // ...

});

Access results:

$results = $pipe->wait();

return $results['first']->output();

Pool Processes

Manage multiple concurrent asynchronous processes:

use Illuminate\Process\Pool;

use Illuminate\Support\Facades\Process;

$pool = Process::pool(function (Pool $pool) {

    $pool->path(__DIR__)->command('bash import-1.sh');

    $pool->path(__DIR__)->command('bash import-2.sh');

    $pool->path(__DIR__)->command('bash import-3.sh');

})->start(function (string $type, string $output, int $key) {

    // ...

});

while ($pool->running()->isNotEmpty()) {

    // ...

}

$results = $pool->wait();

Access individual process IDs:

$processIds = $pool->running()->each->id();

Send signals to all pool processes:

$pool->signal(SIGUSR2);

Testing

Laravel's process testing features include:

Faking Processes

Faking all processes:

use Illuminate\Support\Facades\Process;

Process::fake();

$response = $this->get('/import');

134



Process::assertRan('bash import.sh');

Process::assertRan(function (PendingProcess $process, ProcessResult $result) {

    return $process->command === 'bash import.sh' && $process->timeout === 60;

});

Faking Specific Processes

Set fake results for particular commands:

Process::fake([

    'cat *' => Process::result(

        output: 'Test "cat" output',

    ),

    'ls *' => Process::result(

        output: 'Test "ls" output',

    ),

]);

Or, specify simple strings:

Process::fake([

    'cat *' => 'Test "cat" output',

    'ls *' => 'Test "ls" output',

]);

Fake Multiple Invocations

Use sequence()  to assign different fakes for repeated calls:

Process::fake([ 

    'ls *' => Process::sequence()

        ->push(Process::result('First invocation'))

        ->push(Process::result('Second invocation')),

]);

Fake Asynchronous Lifecycles

Describe how a fake process behaves over multiple iterations:

Process::fake([

    'bash import.sh' => Process::describe()

        ->output('First line of standard output')

        ->errorOutput('First line of error output')

        ->output('Second line of standard output')

        ->exitCode(0)

        ->iterations(3),

]);

Assertions

Check if process was invoked:

Process::assertRan('ls -la');

Process::assertRan(function (PendingProcess $process, ProcessResult $result) {

135



    return $process->command === 'ls -la' && $process->path === __DIR__ && $process->t

});

Check process was not invoked:

Process::assertDidntRun('ls -la');

Process::assertDidntRun(function (PendingProcess $process, ProcessResult $result) {

    return $process->command === 'ls -la';

});

Check invocation count:

Process::assertRanTimes('ls -la', times: 3);

Process::assertRanTimes(function (PendingProcess $process, ProcessResult $result) {

    return $process->command === 'ls -la';

}, times: 3);

Prevent Stray Processes

Avoid actual process startups in tests:

use Illuminate\Support\Facades\Process;

Process::preventStrayProcesses();

Process::fake([

    'ls *' => 'Test output...',

]);

Process::run('ls -la'); // returns fake result

Process::run('bash import.sh'); // throws exception

136



Hello

137



Rate Limiting

Introduction

Laravel includes a simple to use rate limiting abstraction which, in conjunction with your application's cache,

provides an easy way to limit any action during a specified window of time.

If you are interested in rate limiting incoming HTTP requests, please consult the rate limiter middleware

documentation.

Cache Configuration

Typically, the rate limiter utilizes your default application cache as defined by the default  key within your

application's cache  configuration file. However, you may specify which cache driver the rate limiter should

use by defining a limiter  key within your application's cache  configuration file:

// Example configuration

'default' => env('CACHE_STORE', 'database'),

'limiter' => 'redis',

Basic Usage

The Illuminate\Support\Facades\RateLimiter  facade may be used to interact with the rate limiter.

The simplest method offered by the rate limiter is the attempt  method, which rate limits a given callback

for a given number of seconds.

The attempt  method returns false  when the callback has no remaining attempts available; otherwise,

it returns the callback's result or true . The first argument accepted by attempt  is a rate limiter "key",

which can be any string representing the action being rate limited:

use Illuminate\Support\Facades\RateLimiter;

$executed = RateLimiter::attempt(

    'send-message:' . $user->id,

    $perMinute = 5,

    function() {

        // Send message...

    }

);

if (! $executed) {

    return 'Too many messages sent!';

}

If necessary, you may provide a fourth argument to attempt , which is the "decay rate" — the number of

seconds until attempts are reset. For example, to allow five attempts every two minutes:

$executed = RateLimiter::attempt(

    'send-message:' . $user->id,

    $perTwoMinutes = 5,

    function() {

        // Send message...

138

https://laravel.com/docs/12.x/routing#rate-limiting
https://laravel.com/docs/12.x/routing#rate-limiting


    },

    $decayRate = 120,

);

Manually Incrementing Attempts

You can manually interact with the rate limiter using methods like tooManyAttempts , increment , and

remaining .

Check if Limits are Exceeded

use Illuminate\Support\Facades\RateLimiter;

if (RateLimiter::tooManyAttempts('send-message:' . $user->id, $perMinute = 5)) {

    return 'Too many attempts!';

}

Increment Attempts

RateLimiter::increment('send-message:' . $user->id);

// Proceed to send message...

Remaining Attempts

use Illuminate\Support\Facades\RateLimiter;

if (RateLimiter::remaining('send-message:' . $user->id, $perMinute = 5)) {

    RateLimiter::increment('send-message:' . $user->id);

    // Send message...

}

Increment by a Specific Amount

To increment attempts by more than one, pass the amount as a second parameter:

RateLimiter::increment('send-message:' . $user->id, amount: 5);

Determining Limiter Availability

When no attempts are left, availableIn  returns the seconds until more attempts are available:

use Illuminate\Support\Facades\RateLimiter;

if (RateLimiter::tooManyAttempts('send-message:' . $user->id, $perMinute = 5)) {

    $seconds = RateLimiter::availableIn('send-message:' . $user->id);

    return 'You may try again in ' . $seconds . ' seconds.';

}

RateLimiter::increment('send-message:' . $user->id);

// Proceed to send message...

139



Clearing Attempts

You can reset the attempt count for a specific key using clear . For example, when a message is read:

use App\Models\Message;

use Illuminate\Support\Facades\RateLimiter;

/**

 * Mark the message as read.

 */

public function read(Message $message): Message

{

    $message->markAsRead();

    RateLimiter::clear('send-message:' . $message->user_id);

    return $message;

}

140



Strings

Introduction

Laravel includes a variety of functions for manipulating string values. Many of these functions are used by the

framework itself; however, you are free to use them in your own applications if you find them convenient.

Available Methods

Strings

__()

The __  function translates the given translation string or translation key using your localization files.

Example:

echo __('Welcome to our application');

echo __('messages.welcome');

If the translation does not exist, it returns the key itself.

class_basename()

Returns the class name of the given class without its namespace.

e()

Runs PHP's htmlspecialchars  with double encoding.

preg_replace_array()

Replaces sequentially in a string using an array of replacements.

Str::after

Gets the string after a given substring.

Str::afterLast

Gets everything after the last occurrence of a substring.

Str::apa

Converts a string to APA title case.

Str::ascii

Transliterates a string into ASCII.

Str::before

Gets everything before a substring.

Str::beforeLast

Gets everything before the last occurrence of a substring.

Str::between

Extracts the string between two substrings.

Str::betweenFirst

Extracts the shortest substring between two strings.

141

https://laravel.com/docs/12.x/localization


Str::camel

Converts string to camelCase.

Str::charAt

Gets a character at a specific position (returns false if out of bounds).

Str::chopStart

Removes specified start substring if present.

Str::chopEnd

Removes specified end substring if present.

Str::contains

Checks if a string contains a value or any of multiple values.

Str::containsAll

Checks if a string contains all given substrings.

Str::doesntContain

Checks if a string does not contain a value or any of multiple values.

Str::doesntEndWith

Checks if a string does not end with a value or any in multiple.

Str::doesntStartWith

Checks if a string does not start with a value or any in multiple.

Str::excerpt

Extracts an excerpt matching the first occurrence of a phrase.

Str::finish

Appends a suffix if not already present.

Str::fromBase64

Decodes a Base64 string.

Str::headline

Converts delimited strings into headline format with capitalized words.

Str::inlineMarkdown

Converts Markdown to inline HTML (without wrapping in block elements).

Str::is

Pattern-matching with wildcards.

Str::isAscii

Checks if a string is ASCII.

Str::isJson

Checks if a string contains valid JSON.

Str::isUlid

Checks if a string is a ULID.

Str::isUrl

Checks if a string is a URL; can specify protocols.

Str::isUuid

Checks if a string is a UUID.

142



Str::kebab

Converts string to kebab-case.

Str::lcfirst

Lowercases the first character.

Str::length

Gets string length.

Str::limit

Truncates string to specified length, with options for omission and preserving words.

Str::lower

Converts string to lowercase.

Str::markdown

Converts Markdown to HTML.

Str::mask

Masks part of a string, obfuscating data like emails and phone numbers.

Str::match

Extracts part of a string matching regex.

Str::matchAll

Returns all matches of a regex pattern.

Str::orderedUuid

Generates timestamp-ordered UUID.

Str::padBoth

Wraps string on both sides with padding.

Str::padLeft

Pads string on the left.

Str::padRight

Pads string on the right.

Str::password

Generates a secure random password.

Str::plural

Converts to plural form, supporting multiple languages.

Str::pluralStudly

Converts singular studly-case words to plural.

Str::position

Finds the position of a substring.

Str::random

Generates a random string.

Str::remove

Removes specified substring(s).

Str::repeat

Repeats the string.

143



Str::replace

Replaces a string within another.

Str::replaceArray

Replaces sequentially using an array.

Str::replaceFirst

Replaces first occurrence.

Str::replaceLast

Replaces last occurrence.

Str::replaceMatches

Replaces regex-matched parts.

Str::replaceStart

Replaces start substring if present.

Str::replaceEnd

Replaces end substring if present.

Str::reverse

Reverses the string.

Str::singular

Converts to singular form.

Str::slug

Creates URL slug.

Str::snake

Converts to snake_case.

Str::split

Splits into a collection with regex.

Str::squish

Removes excess whitespace.

Str::start

Prepends string if not start with specified value.

Str::startsWith

Checks if string starts with a value or any in array.

Str::studly

Converts to StudlyCase.

Str::substr

Extracts part by start and length.

Str::substrReplace

Replaces substring at position.

Str::swap

Replaces multiple values according to array in string.

Str::take

Gets first characters.

144



Str::tap

Allows examining string without modifying.

Str::test

Tests pattern match.

Str::title

Converts to Title Case.

Str::toBase64

Encodes string as Base64.

Str::toHtmlString

Converts to HtmlString .

Str::toUri

Converts to Uri object.

Str::transliterate

Converts to ASCII approximation.

Str::trim

Trims whitespace or characters.

Str::ltrim

Trims left side.

Str::rtrim

Trims right side.

Str::ucfirst

Uppercases first character.

Str::ucsplit

Splits into array at uppercase letters.

Str::unwrap

Removes specified start/end strings.

Str::upper

Uppercases string.

Str::when

Executes closure if condition is true.

Str::whenContains

Executes if string contains value.

Str::whenContainsAll

Executes if string contains all values.

Str::whenDoesntEndWith

Executes if not ending with substring.

Str::whenDoesntStartWith

Executes if not starting with substring.

Str::whenEmpty

Executes if empty.

145



Str::whenNotEmpty

Executes if not empty.

Str::whenStartsWith

Executes if start with.

Str::whenEndsWith

Executes if ending with.

Str::whenExactly

Executes if exactly matches.

Str::whenNotExactly

Executes if not exactly matching.

Str::whenIs

Executes if pattern matches.

Str::whenIsAscii

Executes if string is ASCII.

Str::whenIsUlid

Executes if string is ULID.

Str::whenIsUuid

Executes if string is UUID.

Str::whenTest

Executes if regex pattern matches.

Str::wordCount

Counts words in a string.

Str::words

Limits to number of words with optional suffix.

Str::wrap

Wraps string with prefix and/or suffix.

On this page

Introduction

Available Methods

146



Hello

147



Cache

Introduction

Some of the data retrieval or processing tasks performed by your application could be CPU intensive or take

several seconds to complete. When this is the case, it is common to cache the retrieved data for a time so it can

be retrieved quickly on subsequent requests for the same data. The cached data is usually stored in a very fast

data store such as Memcached or Redis.

Thankfully, Laravel provides an expressive, unified API for various cache backends, allowing you to take

advantage of their blazing fast data retrieval and speed up your web application.

Configuration

Your application's cache configuration file is located at config/cache.php . In this file, you may specify

which cache store you would like to be used by default throughout your application. Laravel supports popular

caching backends like Memcached, Redis, DynamoDB, and relational databases out of the box. Additionally, a

file-based cache driver is available, while array  and null  cache drivers provide convenient cache

backends for your automated tests.

The cache configuration file also contains other options that you may review. By default, Laravel is configured

to use the database  cache driver, which stores serialized, cached objects in your application's database.

Driver Prerequisites

Database

When using the database  cache driver, you will need a database table to contain the cache data. Typically,

this is included in Laravel's default 0001_01_01_000001_create_cache_table.php  migration;

however, if your application does not contain this migration, you may use the Artisan command to create it:

php artisan make:cache-table

php artisan migrate

Memcached

Using the Memcached driver requires the Memcached PECL package to be installed. You may list all of your

Memcached servers in config/cache.php . The file already contains an entry to get you started:

'memcached' => [

    // ...

    'servers' => [

        [

            'host' => env('MEMCACHED_HOST', '127.0.0.1'),

            'port' => env('MEMCACHED_PORT', 11211),

            'weight' => 100,

        ],

    ],

],

If needed, you can set the host  option to a UNIX socket path. In this case, set the port  to 0 :

'memcached' => [

    // ...

148

https://memcached.org/
https://redis.io/
https://memcached.org/
https://redis.io/
https://aws.amazon.com/dynamodb
https://pecl.php.net/package/memcached


    'servers' => [

        [

            'host' => '/var/run/memcached/memcached.sock',

            'port' => 0,

            'weight' => 100,

        ],

    ],

],

Redis

Before using Redis, install the PhpRedis PHP extension via PECL or the predis/predis  package (~2.0) via

Composer. Laravel Sail includes this extension. Official Laravel hosting platforms such as Laravel Cloud and

Laravel Forge have PhpRedis installed by default.

For more information, see the Laravel Redis configuration.

DynamoDB

Before using the DynamoDB cache driver, you need to create a DynamoDB table to store all cached data,

typically named cache . The table name can be set via the stores.dynamodb.table  configuration

option or the DYNAMODB_CACHE_TABLE  environment variable.

The DynamoDB table should have a string partition key named key  by default or as specified in the

configuration. You should also enable TTL (Time to Live) on the table, setting the TTL attribute to

expires_at . Install the AWS SDK using:

composer require aws/aws-sdk-php

Configure DynamoDB in your application's cache.php :

'dynamodb' => [

    'driver' => 'dynamodb',

    'key' => env('AWS_ACCESS_KEY_ID'),

    'secret' => env('AWS_SECRET_ACCESS_KEY'),

    'region' => env('AWS_DEFAULT_REGION', 'us-east-1'),

    'table' => env('DYNAMODB_CACHE_TABLE', 'cache'),

    'endpoint' => env('DYNAMODB_ENDPOINT'),

],

MongoDB

If using MongoDB, a mongodb  cache driver is provided by the mongodb/laravel-mongodb  package.

MongoDB supports TTL indexes to automatically clear expired cache items. For configuration, see the

MongoDB cache documentation.

Cache Usage

Obtaining a Cache Instance

Use the Cache  facade, which provides convenient access to cache implementations:

<?php

namespace App\Http\Controllers;

use Illuminate\Support\Facades\Cache;

class UserController extends Controller

149

https://cloud.laravel.com/
https://forge.laravel.com/
https://laravel.com/docs/12.x/redis#configuration
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/cache/


{

    /**

     * Show a list of all users of the application.

     */

    public function index(): array

    {

        $value = Cache::get('key');

        return [

            // ...

        ];

    }

}

Accessing Multiple Cache Stores

Use the store  method to select specific cache stores:

$value = Cache::store('file')->get('foo');

Cache::store('redis')->put('bar', 'baz', 600); // 10 Minutes

Retrieving Items From the Cache

Use Cache::get() , which returns null  if the item doesn't exist. Provide a default value as second

argument if desired:

$value = Cache::get('key');

$value = Cache::get('key', 'default');

You can pass a closure as the default value; the closure's result will be returned if the item isn't in cache:

$value = Cache::get('key', function () {

    return DB::table(/* ... */)->get();

});

Determining Item Existence

Use has()  to check if an item exists (returns false  if the item exists but its value is null ):

if (Cache::has('key')) {

    // ...

}

Incrementing / Decrementing Values

Adjust integer cache items:

// Initialize the value if it does not exist...

Cache::add('key', 0, now()->addHours(4));

// Increment or decrement the value...

Cache::increment('key');

Cache::increment('key', $amount);

Cache::decrement('key');

Cache::decrement('key', $amount);

150



Retrieve and Store ( remember  pattern)

Retrieve an item or execute a callback to store if missing:

$value = Cache::remember('users', $seconds, function () {

    return DB::table('users')->get();

});

Use rememberForever()  to store indefinitely:

$value = Cache::rememberForever('users', function () {

    return DB::table('users')->get();

});

Stale While Revalidate

Serve partially stale data while background recalculation occurs:

$value = Cache::flexible('users', [5, 10], function () {

    return DB::table('users')->get();

});

Retrieve and Delete ( pull )

Retrieve and remove an item:

$value = Cache::pull('key');

$value = Cache::pull('key', 'default');

Storing Items

Use put() :

Cache::put('key', 'value', $seconds);

Cache::put('key', 'value'); // forever if no seconds specified

Cache::put('key', 'value', now()->addMinutes(10));

Store if Not Present ( add() )

Adds only if the key does not exist, returns true  if successful:

Cache::add('key', 'value', $seconds);

Store Forever ( forever() )

Cache::forever('key', 'value');

If using Memcached, forever items may be removed when cache reaches size limit.

Removing Items

Use forget() :

Cache::forget('key');

Or set to expire immediately with non-positive seconds:

151



Cache::put('key', 'value', 0);

Cache::put('key', 'value', -5);

Clear Entire Cache

Cache::flush();

Flushing does not respect cache prefixes; it removes all entries.

Cache Memoization ( memo  Driver)

Stores cache values in memory during request/job:

use Illuminate\Support\Facades\Cache;

$value = Cache::memo()->get('key');

You can specify a cache store:

// Default store

$value = Cache::memo()->get('key');

// Redis store

$value = Cache::memo('redis')->get('key');

Repeated calls within the same request will use in-memory cached value, avoiding hits to the underlying store.

Mutating cache via put() , increment() , etc., automatically forgets in-memory cache:

Cache::memo()->put('name', 'Taylor');

Cache::memo()->get('name'); // hits underlying cache...

Cache::memo()->put('name', 'Tim'); // forgets in-memory cache and updates underlying c

The Cache Helper

Use the global cache()  function:

$value = cache('key'); // get

cache(['key' => 'value'], $seconds); // store

cache(['key' => 'value'], now()->addMinutes(10));

Calling cache()  with no arguments returns a cache repository instance, allowing other cache methods:

cache()->remember('users', $seconds, function () {

    return DB::table('users')->get();

});

You can mock cache in tests with Cache::shouldReceive() .

Atomic Locks

These are distributed locks to prevent race conditions, used with cache drivers like Memcached, Redis,

DynamoDB, database, file, or array.

Managing Locks

152



Create or manage locks via Cache::lock() :

use Illuminate\Support\Facades\Cache;

$lock = Cache::lock('foo', 10);

if ($lock->get()) {

    // Lock acquired for 10 seconds...

    $lock->release();

}

get()  also accepts a closure; Laravel releases lock after closure executes:

Cache::lock('foo', 10)->get(function () {

    // Lock acquired for 10 seconds and released after...

});

Wait for Lock

To wait for a lock with timeout:

use Illuminate\Contracts\Cache\LockTimeoutException;

$lock = Cache::lock('foo', 10);

try {

    $lock->block(5); // max 5 seconds

    // Lock acquired after waiting...

} catch (LockTimeoutException $e) {

    // Unable to acquire lock...

} finally {

    $lock->release();

}

Or with a closure and automatic release:

Cache::lock('foo', 10)->block(5, function () {

    // Lock acquired for 10s after waiting up to 5s...

});

Managing Locks Across Processes

You may acquire a lock in one process and release it in another by passing the lock's owner token:

$podcast = Podcast::find($id);

$lock = Cache::lock('processing', 120);

if ($lock->get()) {

    ProcessPodcast::dispatch($podcast, $lock->owner());

}

In the job:

Cache::restoreLock('processing', $this->owner)->release();

To force release regardless of owner:

153



Cache::lock('processing')->forceRelease();

Adding Custom Cache Drivers

Writing the Driver

Implement the Illuminate\Contracts\Cache\Store  contract. Example for MongoDB:

<?php

namespace App\Extensions;

use Illuminate\Contracts\Cache\Store;

class MongoStore implements Store

{

    public function get($key) {}

    public function many(array $keys) {}

    public function put($key, $value, $seconds) {}

    public function putMany(array $values, $seconds) {}

    public function increment($key, $value = 1) {}

    public function decrement($key, $value = 1) {}

    public function forever($key, $value) {}

    public function forget($key) {}

    public function flush() {}

    public function getPrefix() {}

}

Registering the driver:

Cache::extend('mongo', function (Application $app) {

    return Cache::repository(new MongoStore);

});

Place your custom cache code in a suitable namespace, e.g., app/Extensions .

Registering the Driver

Register your custom driver within a booting  callback in a service provider:

<?php

namespace App\Providers;

use App\Extensions\MongoStore;

use Illuminate\Contracts\Foundation\Applicaton;

use Illuminate\Support\Facades\Cache;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{

    public function register(): void

    {

        $this->app->booting(function () {

            Cache::extend('mongo', function (Application $app) {

                return Cache::repository(new MongoStore);

            });

154



        });

    }

    public function boot(): void

    {

        // ...

    }

}

Update the environment variable or config option CACHE_STORE  to your new driver name.

Events

To run code on cache events, listen for Laravel's cache events such as:

Illuminate\Cache\Events\CacheFlushed

Illuminate\Cache\Events\CacheHit

Illuminate\Cache\Events\CacheMissed

etc.

Disable cache events by setting events  to false  in config/cache.php , e.g.,

'database' => [

    'driver' => 'database',

    // ...

    'events' => false,

],

155



Hello

156



Concurrency

Introduction

Sometimes you may need to execute several slow tasks which do not depend on one another. In many cases,

significant performance improvements can be realized by executing the tasks concurrently. Laravel's

Concurrency  facade provides a simple, convenient API for executing closures concurrently.

How it Works

Laravel achieves concurrency by serializing the given closures and dispatching them to a hidden Artisan CLI

command, which unserializes the closures and invokes it within its own PHP process. After the closure has

been invoked, the resulting value is serialized back to the parent process.

The Concurrency  facade supports three drivers: process  (the default), fork , and sync .

The fork  driver offers improved performance compared to the default process  driver, but it may only

be used within PHP's CLI context, as PHP does not support forking during web requests. Before using the

fork  driver, you need to install the spatie/fork  package:

composer require spatie/fork

The sync  driver is primarily useful during testing when you want to disable all concurrency and simply

execute the given closures in sequence within the parent process.

Running Concurrent Tasks

To run concurrent tasks, you may invoke the Concurrency  facade's run  method. The run  method

accepts an array of closures which should be executed simultaneously in child PHP processes:

use Illuminate\Support\Facades\Concurrency;

use Illuminate\Support\Facades\DB;

[$userCount, $orderCount] = Concurrency::run([

    fn () => DB::table('users')->count(),

    fn () => DB::table('orders')->count(),

]);

To use a specific driver, you may use the driver  method:

$results = Concurrency::driver('fork')->run(...);

Or, to change the default concurrency driver, you should publish the concurrency  configuration file via

the config:publish  Artisan command and update the default  option within the file:

php artisan config:publish concurrency

Deferring Concurrent Tasks

If you would like to execute an array of closures concurrently, but are not interested in the results returned by

those closures, you should consider using the defer  method. When the defer  method is invoked, the

given closures are not executed immediately. Instead, Laravel will execute the closures concurrently after the

HTTP response has been sent to the user:

157



use App\Services\Metrics;

use Illuminate\Support\Facades\Concurrency;

Concurrency::defer([

    fn () => Metrics::report('users'),

    fn () => Metrics::report('orders'),

]);

On this page

Introduction

Running Concurrent Tasks

Deferring Concurrent Tasks

158



Hello

159



Contracts

Introduction

Laravel's "contracts" are a set of interfaces that define the core services provided by the framework. For

example, an Illuminate\Contracts\Queue\Queue  contract defines the methods needed for queueing

jobs, while the Illuminate\Contracts\Mail\Mailer  contract defines the methods needed for sending

e-mail.

Each contract has a corresponding implementation provided by the framework. For example, Laravel

provides a queue implementation with a variety of drivers, and a mailer implementation that is powered by

Symfony Mailer.

All of the Laravel contracts live in their own GitHub repository. This provides a quick reference point for all

available contracts, as well as a single, decoupled package that may be utilized when building packages that

interact with Laravel services.

Contracts vs. Facades

Laravel's facades and helper functions provide a simple way of utilizing Laravel's services without needing to

type-hint and resolve contracts out of the service container. In most cases, each facade has an equivalent

contract.

Unlike facades, which do not require you to include them in your class's constructor, contracts allow you to

define explicit dependencies for your classes. Some developers prefer to explicitly define their dependencies

in this way and therefore prefer to use contracts, while others enjoy the convenience of facades. In general,

most applications can use facades without issue during development.

When to Use Contracts

The decision to use contracts or facades will come down to personal taste and the tastes of your development

team. Both contracts and facades can be used to create robust, well-tested Laravel applications. They are not

mutually exclusive; some parts of your application may use facades while others depend on contracts. As long

as you keep your class responsibilities focused, you'll notice very few practical differences.

In general, most applications can use facades without issue during development. If you are building a package

that integrates with multiple PHP frameworks, you may wish to use the illuminate/contracts  package

to define your integration with Laravel's services without requiring Laravel's concrete implementations in your

package's composer.json .

How to Use Contracts

Many types of classes in Laravel are resolved through the service container, including controllers, event

listeners, middleware, queued jobs, and route closures. To get an implementation of a contract, you can just

type-hint the interface in the constructor of the class being resolved.

Example: Event Listener

<?php

namespace App\Listeners;

160

https://symfony.com/doc/current/mailer.html
https://github.com/illuminate/contracts
https://laravel.com/docs/12.x/facades
https://laravel.com/docs/12.x/container


use App\Events\OrderWasPlaced;

use App\Models\User;

use Illuminate\Contracts\Redis\Factory;

class CacheOrderInformation

{

    /**

     * Create the event listener.

     */

    public function __construct(

        protected Factory $redis,

    ) {}

    /**

     * Handle the event.

     */

    public function handle(OrderWasPlaced $event): void

    {

        // ...

    }

}

When the event listener is resolved, the service container reads the type-hints on the constructor and injects

the appropriate value. To learn more about registering things in the service container, check out its

documentation.

Contract Reference

This table provides a quick reference to all of the Laravel contracts and their equivalent facades:

Contract References Facade

Illuminate\Contracts\Auth\Access\Authorizable

Illuminate\Contracts\Auth\Access\Gate Gate

Illuminate\Contracts\Auth\Authenticatable

Illuminate\Contracts\Auth\CanResetPassword

Illuminate\Contracts\Auth\Factory Auth

Illuminate\Contracts\Auth\Guard Auth::guard()

Illuminate\Contracts\Auth\PasswordBroker Password::broker()

Illuminate\Contracts\Auth\PasswordBrokerFactory Password

Illuminate\Contracts\Auth\StatefulGuard

Illuminate\Contracts\Auth\SupportsBasicAuth

Illuminate\Contracts\Auth\UserProvider

Illuminate\Contracts\Broadcasting\Broadcaster Broadcast::connection()

Illuminate\Contracts\Broadcasting\Factory Broadcast

Illuminate\Contracts\Broadcasting\ShouldBroadcast

Illuminate\Contracts\Broadcasting\ShouldBroadcastNow

Illuminate\Contracts\Bus\Dispatcher Bus

Illuminate\Contracts\Bus\QueueingDispatcher Bus::dispatchToQueue()

Illuminate\Contracts\Cache\Factory Cache

Illuminate\Contracts\Cache\Lock

Illuminate\Contracts\Cache\LockProvider

Illuminate\Contracts\Cache\Repository Cache::driver()

161

https://laravel.com/docs/12.x/container
https://laravel.com/docs/12.x/container
https://github.com/illuminate/contracts/blob/12.x/Auth/Access/Authorizable.php
https://github.com/illuminate/contracts/blob/12.x/Auth/Access/Gate.php
https://github.com/illuminate/contracts/blob/12.x/Auth/Authenticatable.php
https://github.com/illuminate/contracts/blob/12.x/Auth/CanResetPassword.php
https://github.com/illuminate/contracts/blob/12.x/Auth/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Auth/Guard.php
https://github.com/illuminate/contracts/blob/12.x/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/12.x/Auth/PasswordBrokerFactory.php
https://github.com/illuminate/contracts/blob/12.x/Auth/StatefulGuard.php
https://github.com/illuminate/contracts/blob/12.x/Auth/SupportsBasicAuth.php
https://github.com/illuminate/contracts/blob/12.x/Auth/UserProvider.php
https://github.com/illuminate/contracts/blob/12.x/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/12.x/Broadcasting/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Broadcasting/ShouldBroadcast.php
https://github.com/illuminate/contracts/blob/12.x/Broadcasting/ShouldBroadcastNow.php
https://github.com/illuminate/contracts/blob/12.x/Bus/Dispatcher.php
https://github.com/illuminate/contracts/blob/12.x/Bus/QueueingDispatcher.php
https://github.com/illuminate/contracts/blob/12.x/Cache/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Cache/Lock.php
https://github.com/illuminate/contracts/blob/12.x/Cache/LockProvider.php
https://github.com/illuminate/contracts/blob/12.x/Cache/Repository.php


Contract References Facade

Illuminate\Contracts\Cache\Store

Illuminate\Contracts\Config\Repository Config

Illuminate\Contracts\Console\Application

Illuminate\Contracts\Console\Kernel Artisan

Illuminate\Contracts\Container\Container App

Illuminate\Contracts\Cookie\Factory Cookie

Illuminate\Contracts\Cookie\QueueingFactory Cookie::queue()

Illuminate\Contracts\Database\ModelIdentifier

Illuminate\Contracts\Debug\ExceptionHandler

Illuminate\Contracts\Encryption\Encrypter Crypt

Illuminate\Contracts\Events\Dispatcher Event

Illuminate\Contracts\Filesystem\Cloud Storage::cloud()

Illuminate\Contracts\Filesystem\Factory Storage

Illuminate\Contracts\Filesystem\Filesystem Storage::disk()

Illuminate\Contracts\Foundation\Application App

Illuminate\Contracts\Hashing\Hasher Hash

Illuminate\Contracts\Http\Kernel

Illuminate\Contracts\Mail\Mailable

Illuminate\Contracts\Mail\Mailer Mail

Illuminate\Contracts\Mail\MailQueue Mail::queue()

Illuminate\Contracts\Notifications\Dispatcher Notification

Illuminate\Contracts\Notifications\Factory Notification

Illuminate\Contracts\Pagination\LengthAwarePaginator

Illuminate\Contracts\Pagination\Paginator

Illuminate\Contracts\Pipeline\Hub

Illuminate\Contracts\Pipeline\Pipeline Pipeline

Illuminate\Contracts\Queue\EntityResolver

Illuminate\Contracts\Queue\Factory Queue

Illuminate\Contracts\Queue\Job

Illuminate\Contracts\Queue\Monitor Queue

Illuminate\Contracts\Queue\Queue Queue::connection()

Illuminate\Contracts\Queue\QueueableCollection

Illuminate\Contracts\Queue\QueueableEntity

Illuminate\Contracts\Queue\ShouldQueue

Illuminate\Contracts\Redis\Factory Redis

Illuminate\Contracts\Routing\BindingRegistrar Route

Illuminate\Contracts\Routing\Registrar Route

Illuminate\Contracts\Routing\ResponseFactory Response

Illuminate\Contracts\Routing\UrlGenerator URL

Illuminate\Contracts\Routing\UrlRoutable

Illuminate\Contracts\Session\Session Session::driver()

Illuminate\Contracts\Support\Arrayable

Illuminate\Contracts\Support\Htmlable

Illuminate\Contracts\Support\Jsonable

Illuminate\Contracts\Support\MessageBag

Illuminate\Contracts\Support\MessageProvider

Illuminate\Contracts\Support\Renderable

Illuminate\Contracts\Support\Responsable

162

https://github.com/illuminate/contracts/blob/12.x/Cache/Store.php
https://github.com/illuminate/contracts/blob/12.x/Config/Repository.php
https://github.com/illuminate/contracts/blob/12.x/Console/Application.php
https://github.com/illuminate/contracts/blob/12.x/Console/Kernel.php
https://github.com/illuminate/contracts/blob/12.x/Container/Container.php
https://github.com/illuminate/contracts/blob/12.x/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/12.x/Database/ModelIdentifier.php
https://github.com/illuminate/contracts/blob/12.x/Debug/ExceptionHandler.php
https://github.com/illuminate/contracts/blob/12.x/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/12.x/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/12.x/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/12.x/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/12.x/Foundation/Application.php
https://github.com/illuminate/contracts/blob/12.x/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/12.x/Http/Kernel.php
https://github.com/illuminate/contracts/blob/12.x/Mail/Mailable.php
https://github.com/illuminate/contracts/blob/12.x/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/12.x/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/12.x/Notifications/Dispatcher.php
https://github.com/illuminate/contracts/blob/12.x/Notifications/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Pagination/LengthAwarePaginator.php
https://github.com/illuminate/contracts/blob/12.x/Pagination/Paginator.php
https://github.com/illuminate/contracts/blob/12.x/Pipeline/Hub.php
https://github.com/illuminate/contracts/blob/12.x/Pipeline/Pipeline.php
https://github.com/illuminate/contracts/blob/12.x/Queue/EntityResolver.php
https://github.com/illuminate/contracts/blob/12.x/Queue/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Queue/Job.php
https://github.com/illuminate/contracts/blob/12.x/Queue/Monitor.php
https://github.com/illuminate/contracts/blob/12.x/Queue/Queue.php
https://github.com/illuminate/contracts/blob/12.x/Queue/QueueableCollection.php
https://github.com/illuminate/contracts/blob/12.x/Queue/QueueableEntity.php
https://github.com/illuminate/contracts/blob/12.x/Queue/ShouldQueue.php
https://github.com/illuminate/contracts/blob/12.x/Redis/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Routing/BindingRegistrar.php
https://github.com/illuminate/contracts/blob/12.x/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/12.x/Routing/ResponseFactory.php
https://github.com/illuminate/contracts/blob/12.x/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/12.x/Routing/UrlRoutable.php
https://github.com/illuminate/contracts/blob/12.x/Session/Session.php
https://github.com/illuminate/contracts/blob/12.x/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/12.x/Support/Htmlable.php
https://github.com/illuminate/contracts/blob/12.x/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/12.x/Support/MessageBag.php
https://github.com/illuminate/contracts/blob/12.x/Support/MessageProvider.php
https://github.com/illuminate/contracts/blob/12.x/Support/Renderable.php
https://github.com/illuminate/contracts/blob/12.x/Support/Responsable.php


Contract References Facade

Illuminate\Contracts\Translation\Loader

Illuminate\Contracts\Translation\Translator Lang

Illuminate\Contracts\Validation\Factory Validator

Illuminate\Contracts\Validation\ValidatesWhenResolved

Illuminate\Contracts\Validation\ValidationRule

Illuminate\Contracts\Validation\Validator Validator::make()

Illuminate\Contracts\View\Engine

Illuminate\Contracts\View\Factory View

Illuminate\Contracts\View\View View::make()

163

https://github.com/illuminate/contracts/blob/12.x/Translation/Loader.php
https://github.com/illuminate/contracts/blob/12.x/Translation/Translator.php
https://github.com/illuminate/contracts/blob/12.x/Validation/Factory.php
https://github.com/illuminate/contracts/blob/12.x/Validation/ValidatesWhenResolved.php
https://github.com/illuminate/contracts/blob/12.x/Validation/ValidationRule.php
https://github.com/illuminate/contracts/blob/12.x/Validation/Validator.php
https://github.com/illuminate/contracts/blob/12.x/View/Engine.php
https://github.com/illuminate/contracts/blob/12.x/View/Factory.php
https://github.com/illuminate/contracts/blob/12.x/View/View.php


Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

164

https://example.com/


Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

Hello

World

Introduction

Laravel provides a powerful filesystem abstraction thanks to the wonderful Flysystem PHP package by Frank

de Jonge. The Laravel Flysystem integration provides simple drivers for working with local filesystems, SFTP,

and Amazon S3...

Configuration

Laravel's filesystem configuration file is located at config/filesystems.php . Within this file...

The Local Driver

When using the local  driver, all file operations are relative to the root  directory...

use Illuminate\Support\Facades\Storage;

Storage::disk('local')->put('example.txt', 'Contents');

The Public Disk

165

https://example.com/
https://example.com/
https://github.com/thephpleague/flysystem


The public  disk is intended for files accessible publicly...

To create a symbolic link from storage/app/public  to public/storage , run:

php artisan storage:link

To generate a URL:

echo asset('storage/file.txt');

Configure additional symbolic links in the filesystems.php :

'links' => [

    public_path('storage') => storage_path('app/public'),

    public_path('images') => storage_path('app/images'),

],

To remove symbolic links:

php artisan storage:unlink

Driver Prerequisites

S3 Driver Configuration

Require the Flysystem AWS S3 package:

composer require league/flysystem-aws-s3-v3 "^3.0" --with-all-dependencies

Configure credentials via environment variables:

AWS_ACCESS_KEY_ID=<your-key-id>

AWS_SECRET_ACCESS_KEY=<your-secret-key>

AWS_DEFAULT_REGION=us-east-1

AWS_BUCKET=<your-bucket-name>

AWS_USE_PATH_STYLE_ENDPOINT=false

FTP Driver Configuration

Require the Flysystem FTP package:

composer require league/flysystem-ftp "^3.0"

Example configuration:

'ftp' => [

  'driver' => 'ftp',

  'host' => env('FTP_HOST'),

  'username' => env('FTP_USERNAME'),

  'password' => env('FTP_PASSWORD'),

  // Optional FTP Settings...

  // 'port' => env('FTP_PORT', 21),

  // 'root' => env('FTP_ROOT'),

  // 'passive' => true,

  // 'ssl' => true,

  // 'timeout' => 30,

],

SFTP Driver Configuration

Require the Flysystem SFTP package:

166



composer require league/flysystem-sftp-v3 "^3.0"

Example configuration:

'sftp' => [

  'driver' => 'sftp',

  'host' => env('SFTP_HOST'),

  // Basic auth

  'username' => env('SFTP_USERNAME'),

  'password' => env('SFTP_PASSWORD'),

  // SSH key-based authentication

  'privateKey' => env('SFTP_PRIVATE_KEY'),

  'passphrase' => env('SFTP_PASSPHRASE'),

  // Permissions

  'visibility' => 'private',

  'directory_visibility' => 'private',

  // Optional settings...

  // 'hostFingerprint' => env('SFTP_HOST_FINGERPRINT'),

  // 'maxTries' => 4,

  // 'port' => env('SFTP_PORT', 22),

  // 'root' => env('SFTP_ROOT', ''),

  // 'timeout' => 30,

],

Scoped and Read-Only Filesystems

Scoped disks prefix all paths. Requires installing:

composer require league/flysystem-path-prefixing "^3.0"

Example scope:

's3-videos' => [

  'driver' => 'scoped',

  'disk' => 's3',

  'prefix' => 'path/to/videos',

],

Read-only disks:

composer require league/flysystem-read-only "^3.0"

And in configuration:

's3-videos' => [

  'driver' => 's3',

  // ...

  'read-only' => true,

],

Amazon S3 Compatible Filesystems

167



Default s3  disk can interact with compatible services like MinIO, DigitalOcean Spaces, etc. Usually, update

credentials and set endpoint :

'endpoint' => env('AWS_ENDPOINT', 'https://minio:9000'),

MinIO

For proper URL generation with MinIO, set:

AWS_URL=http://localhost:9000/local

Note: URL signed URLs may not work if endpoint isn't accessible from the client.

Obtaining Disk Instances

Use the Storage  facade:

Storage::put('avatars/1', $content);

Storage::disk('s3')->put('avatars/1', $content);

On-Demand Disks

Create disks at runtime:

$disk = Storage::build([

  'driver' => 'local',

  'root' => '/path/to/root',

]);

$disk->put('image.jpg', $content);

Retrieving Files

Use get :

$contents = Storage::get('file.jpg');

Decode JSON file:

$orders = Storage::json('orders.json');

Check existence:

if (Storage::disk('s3')->exists('file.jpg')) {

    // ...

}

Check missing:

if (Storage::disk('s3')->missing('file.jpg')) {

    // ...

}

Downloading Files

return Storage::download('file.jpg');

168



return Storage::download('file.jpg', $name, $headers);

File URLs

$url = Storage::url('file.jpg');

Note: For local, URLs are relative ( /storage/file.jpg ). For S3, absolute URL.

Configure URL host:

'public' => [

  'driver' => 'local',

  'root' => storage_path('app/public'),

  'url' => env('APP_URL') . '/storage',

  'visibility' => 'public',

  'throw' => false,

],

Temporary URLs

Create expiring URLs:

$url = Storage::temporaryUrl('file.jpg', now()->addMinutes(5));

Enable local temporary URLs ( serve  option):

'local' => [

  'driver' => 'local',

  'root' => storage_path('app/private'),

  'serve' => true,

  'throw' => false,

],

Specify request parameters:

$url = Storage::temporaryUrl(

  'file.jpg',

  now()->addMinutes(5),

  [

    'ResponseContentType' => 'application/octet-stream',

    'ResponseContentDisposition' => 'attachment; filename=file2.jpg',

  ]

);

Customize temporary URL generation via buildTemporaryUrlsUsing  in a service provider:

Storage::disk('local')->buildTemporaryUrlsUsing(function ($path, $expiration, $options

    return URL::temporarySignedRoute(

        'files.download',

        $expiration,

        array_merge($options, ['path' => $path])

    );

});

Temporary Upload URLs

Supported only via s3 . Generate with:

169



[$url, $headers] = Storage::temporaryUploadUrl('file.jpg', now()->addMinutes(5));

File Metadata

Size:

$size = Storage::size('file.jpg');

Last modified:

$time = Storage::lastModified('file.jpg');

MIME type:

$mime = Storage::mimeType('file.jpg');

File Paths

$path = Storage::path('file.jpg');

Storing Files

Use put :

Storage::put('file.jpg', $contents);

Store resource:

Storage::put('file.jpg', $resource);

Handling failed write:

if (!Storage::put('file.jpg', $contents)) {

    // handle failure

}

Set throw  to true in disk config to throw exceptions on failures.

Prepending and Appending

Storage::prepend('file.log', 'Prepended Text');

Storage::append('file.log', 'Appended Text');

Copying and Moving Files

Storage::copy('old/file.jpg', 'new/file.jpg');

Storage::move('old/file.jpg', 'new/file.jpg');

Automatic Streaming

use Illuminate\Http\File;

use Illuminate\Support\Facades\Storage;

$path = Storage::putFile('photos', new File('/path/to/photo'));

$path = Storage::putFileAs('photos', new File('/path/to/photo'), 'photo.jpg');

You may set visibility during storage:

170



Storage::putFile('photos', new File('/path/to/photo'), 'public');

File Uploads

Store uploaded files:

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class UserAvatarController extends Controller

{

    public function update(Request $request): string

    {

        $path = $request->file('avatar')->store('avatars');

        return $path;

    }

}

Or:

$path = Storage::putFile('avatars', $request->file('avatar'));

Specifying a File Name

Use storeAs :

$path = $request->file('avatar')->storeAs('avatars', $request->user()->id);

Or:

$path = Storage::putFileAs('avatars', $request->file('avatar'), $request->user()->id);

Other Uploaded File Info

Original name:

$file = $request->file('avatar');

$name = $file->getClientOriginalName();

$extension = $file->getClientOriginalExtension();

Hash name for security:

$name = $file->hashName();

$extension = $file->extension();

File Visibility

Set visibility during store:

Storage::put('file.jpg', $contents, 'public');

Get/set visibility:

$visibility = Storage::getVisibility('file.jpg');

Storage::setVisibility('file.jpg', 'public');

171



Store publicly:

$path = $request->file('avatar')->storePublicly('avatars');

$path = $request->file('avatar')->storePubliclyAs('avatars', $request->user()->id);

Local files with public  visibility:

// In configuration

'local' => [

  'driver' => 'local',

  'root' => storage_path('app'),

  'permissions' => [

    'file' => [

      'public' => 0644,

      'private' => 0600,

    ],

    'dir' => [

      'public' => 0755,

      'private' => 0700,

    ],

  ],

  'throw' => false,

],

Deleting Files

Storage::delete('file.jpg');

Storage::delete(['file.jpg', 'file2.jpg']);

Storage::disk('s3')->delete('path/file.jpg');

Directories

Get All Files:

$files = Storage::files($directory);

$files = Storage::allFiles($directory);

Get All Directories:

$directories = Storage::directories($directory);

$directories = Storage::allDirectories($directory);

Create Directory:

Storage::makeDirectory($directory);

Delete Directory:

Storage::deleteDirectory($directory);

Testing

Using Storage::fake('disk_name')  for tests:

use Illuminate\Http\UploadedFile;

use Illuminate\Support\Facades\Storage;

172



test('albums can be uploaded', function () {

    Storage::fake('photos');

    $response = $this->json('POST', '/photos', [

        UploadedFile::fake()->image('photo1.jpg'),

        UploadedFile::fake()->image('photo2.jpg')

    ]);

    Storage::disk('photos')->assertExists('photo1.jpg');

    Storage::disk('photos')->assertExists(['photo1.jpg', 'photo2.jpg']);

    Storage::disk('photos')->assertMissing('missing.jpg');

    Storage::disk('photos')->assertMissing(['missing.jpg', 'non-existing.jpg']);

    Storage::disk('photos')->assertCount('/wallpapers', 2);

    Storage::disk('photos')->assertDirectoryEmpty('/wallpapers');

});

Custom Filesystems

Add a custom driver, e.g., Dropbox:

composer require spatie/flysystem-dropbox

Register in a service provider:

namespace App\Providers;

use Illuminate\Contracts\Foundation\Applicaton;

use Illuminate\Filesystem\FilesystemAdapter;

use Illuminate\Support\Facades\Storage;

use Illuminate\Support\ServiceProvider;

use League\Flysystem\Filesystem;

use Spatie\Dropbox\Client as DropboxClient;

use Spatie\FlysystemDropbox\DropboxAdapter;

class AppServiceProvider extends ServiceProvider

{

    public function register(): void

    {

        // ...

    }

    public function boot(): void

    {

        Storage::extend('dropbox', function (Application $app, array $config) {

            $adapter = new DropboxAdapter(new DropboxClient($config['authorization_tok

            return new FilesystemAdapter(

                new Filesystem($adapter, $config),

                $adapter,

                $config

            );

        });

    }

}

173



Once registered, use the 'dropbox'  driver in filesystems.php .

174



Hello

175



Hello

176



Hello

177



Email Verification

Introduction

Many web applications require users to verify their email addresses before using the application. Rather than

forcing you to re-implement this feature by hand for each application you create, Laravel provides convenient

built-in services for sending and verifying email verification requests.

Want to get started fast? Install one of the Laravel application starter kits in a fresh Laravel application. The

starter kits will take care of scaffolding your entire authentication system, including email verification

support.

Model Preparation

Before getting started, verify that your App\Models\User  model implements the

Illuminate\Contracts\Auth\MustVerifyEmail  contract:

<?php

namespace App\Models;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Illuminate\Notifications\Notifiable;

class User extends Authenticatable implements MustVerifyEmail

{

    use Notifiable;

    // ...

}

Once this interface has been added to your model, newly registered users will automatically be sent an email

containing an email verification link. This happens seamlessly because Laravel automatically registers the

Illuminate\Auth\Listeners\SendEmailVerificationNotification  listener for the

Illuminate\Auth\Events\Registered  event.

If you are manually implementing registration within your application instead of using a starter kit, you

should ensure that you are dispatching the Illuminate\Auth\Events\Registered  event after a user's

registration is successful:

use Illuminate\Auth\Events\Registered;

event(new Registered($user));

Database Preparation

Next, your users  table must contain an email_verified_at  column to store the date and time that the

user's email address was verified. Typically, this is included in Laravel's default

0001_01_01_000000_create_users_table.php  database migration.

Routing

178



To properly implement email verification, three routes will need to be defined. First, a route to display a notice

to the user to click the verification link in the email Laravel sent after registration.

Second, a route to handle requests when the user clicks the verification link.

Third, a route to resend the verification email if the user lost the first.

The Email Verification Notice

A route should be defined that returns a view instructing the user to click the verification link emailed to them

by Laravel after registration. This view will be shown when users try to access other parts of the application

without verifying their email.

The route must be named verification.notice :

Route::get('/email/verify', function () {

    return view('auth.verify-email');

})->middleware('auth')->name('verification.notice');

When implementing email verification yourself, you need to define the verification notice view content

yourself. For scaffolding including all authentication and verification views, check out the Laravel starter kits.

The Email Verification Handler

Define a route that handles requests when users click the email verification link. It should be named

verification.verify  and include the auth  and signed  middlewares:

use Illuminate\Foundation\Auth\EmailVerificationRequest;

Route::get('/email/verify/{id}/{hash}', function (EmailVerificationRequest $request) {

    $request->fulfill();

    return redirect('/home');

})->middleware(['auth', 'signed'])->name('verification.verify');

This route uses EmailVerificationRequest , a form request that Laravel provides, which validates the

id  and hash  parameters automatically.

Calling $request->fulfill()  marks the email as verified and dispatches the

Illuminate\Auth\Events\Verified  event. After verification, redirect users as desired.

Resending the Verification Email

If a user misplaces or accidentally deletes the verification email, you can allow the user to request resending it

via a route:

use Illuminate\Http\Request;

Route::post('/email/verification-notification', function (Request $request) {

    $request->user()->sendEmailVerificationNotification();

    return back()->with('message', 'Verification link sent!');

})->middleware(['auth', 'throttle:6,1'])->name('verification.send');

Protecting Routes

179



Use the verified  route middleware to only allow verified users to access certain routes. Laravel's

verified  middleware, alias of Illuminate\Auth\Middleware\EnsureEmailIsVerified , is

registered automatically:

Route::get('/profile', function () {

    // Only verified users may access this route...

})->middleware(['auth', 'verified']);

Unverified users attempting to access such routes will be redirected to the verification notice route.

Customization

Verification Email Customization

You can customize the email verification notification message. Use the toMailUsing  method in your

AppServiceProvider 's boot  method, which accepts a closure with $notifiable  and $url :

use Illuminate\Auth\Notifications\VerifyEmail;

use Illuminate\Notifications\Messages\MailMessage;

/**

 * Bootstrap any application services.

 */

public function boot(): void

{

    VerifyEmail::toMailUsing(function (object $notifiable, string $url) {

        return (new MailMessage)

            ->subject('Verify Email Address')

            ->line('Click the button below to verify your email address.')

            ->action('Verify Email Address', $url);

    });

}

To learn more about mail notifications, see the mail notification documentation.

Events

Laravel dispatches an Illuminate\Auth\Events\Verified  event during the email verification process

when using the starter kits. If handling email verification manually, you may dispatch this event yourself upon

successful verification.

180



Encryption

Introduction

Laravel's encryption services provide a simple, convenient interface for encrypting and decrypting text via

OpenSSL using AES-256 and AES-128 encryption. All of Laravel's encrypted values are signed using a message

authentication code (MAC) so that their underlying value cannot be modified or tampered with once

encrypted.

Configuration

Before using Laravel's encrypter, you must set the key  configuration option in your config/app.php

configuration file. This configuration value is driven by the APP_KEY  environment variable. You should use

the php artisan key:generate  command to generate this variable's value since the key:generate

command will use PHP's secure random bytes generator to build a cryptographically secure key for your

application. Typically, the value of the APP_KEY  environment variable will be generated for you during

Laravel's installation.

Gracefully Rotating Encryption Keys

If you change your application's encryption key, all authenticated user sessions will be logged out of your

application. This is because every cookie, including session cookies, are encrypted by Laravel. In addition, it

will no longer be possible to decrypt any data that was encrypted with your previous encryption key.

To mitigate this issue, Laravel allows you to list your previous encryption keys in your application's

APP_PREVIOUS_KEYS  environment variable. This variable may contain a comma-delimited list of all of

your previous encryption keys:

APP_KEY="base64:J63qRTDLub5NuZvP+kb8YIorGS6qFYHKVo6u7179stY="

APP_PREVIOUS_KEYS="base64:2nLsGFGzyoae2ax3EF2Lyq/hH6QghBGLIq5uL+Gp8/w="

When you set this environment variable, Laravel will always use the "current" encryption key when encrypting

values. However, when decrypting values, Laravel will first try the current key, and if decryption fails using the

current key, Laravel will try all previous keys until one of the keys is able to decrypt the value.

This approach to graceful decryption allows users to keep using your application uninterrupted even if your

encryption key is rotated.

Using the Encrypter

Encrypting a Value

You may encrypt a value using the encryptString  method provided by the Crypt  facade. All encrypted

values are encrypted using OpenSSL and the AES-256-CBC cipher. Furthermore, all encrypted values are

signed with a message authentication code (MAC). The integrated message authentication code will prevent

the decryption of any values that have been tampered with by malicious users:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;

181

https://laravel.com/docs/12.x/installation


use Illuminate\Http\Request;

use Illuminate\Support\Facades\Crypt;

class DigitalOceanTokenController extends Controller

{

    /**

     * Store a DigitalOcean API token for the user.

     */

    public function store(Request $request): RedirectResponse

    {

        $request->user()->fill([

            'token' => Crypt::encryptString($request->token),

        ])->save();

        return redirect('/secrets');

    }

}

Decrypting a Value

You may decrypt values using the decryptString  method provided by the Crypt  facade. If the value

cannot be properly decrypted, such as when the message authentication code is invalid, an

Illuminate\Contracts\Encryption\DecryptException  will be thrown:

use Illuminate\Contracts\Encryption\DecryptException;

use Illuminate\Support\Facades\Crypt;

try {

    $decrypted = Crypt::decryptString($encryptedValue);

} catch (DecryptException $e) {

    // ...

}

182



Hashing

Introduction

The Laravel Hash  facade provides secure Bcrypt and Argon2 hashing for storing user passwords. If you are

using one of the Laravel application starter kits, Bcrypt will be used for registration and authentication by

default.

Bcrypt is a great choice for hashing passwords because its "work factor" is adjustable, which means that the

time it takes to generate a hash can be increased as hardware power increases. When hashing passwords, slow

is good. The longer an algorithm takes to hash a password, the longer it takes malicious users to generate

"rainbow tables" of all possible string hash values that may be used in brute force attacks against applications.

Configuration

By default, Laravel uses the bcrypt  hashing driver when hashing data. However, several other hashing

drivers are supported, including Argon and Argon2id.

You may specify your application's hashing driver using the HASH_DRIVER  environment variable. To

customize all of Laravel's hashing driver options, you should publish the complete hashing  configuration

file using the Artisan command:

php artisan config:publish hashing

or

php artisan config:publish hashing

Basic Usage

Hashing Passwords

You may hash a password by calling the make  method on the Hash  facade:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\RedirectResponse;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Hash;

class PasswordController extends Controller

{

    /**

     * Update the password for the user.

     */

    public function update(Request $request): RedirectResponse

    {

        // Validate the new password length...

        $request->user()->fill([

183

https://laravel.com/docs/12.x/facades
https://laravel.com/docs/12.x/starter-kits
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Argon2


            'password' => Hash::make($request->newPassword)

        ])->save();

        return redirect('/profile');

    }

}

Adjusting The Bcrypt Work Factor

If you are using the Bcrypt algorithm, the make  method allows you to manage the work factor of the

algorithm using the rounds  option; however, the default work factor managed by Laravel is acceptable for

most applications:

$hashed = Hash::make('password', [

    'rounds' => 12,

]);

Adjusting The Argon2 Work Factor

If you are using the Argon2 algorithm, the make  method allows you to manage the work factor of the

algorithm using the memory , time , and threads  options; however, the default values managed by

Laravel are acceptable for most applications:

$hashed = Hash::make('password', [

    'memory' => 1024,

    'time' => 2,

    'threads' => 2,

]);

For more information on these options, please refer to the official PHP documentation regarding Argon

hashing.

Verifying That a Password Matches a Hash

The check  method provided by the Hash  facade allows you to verify that a given plain-text string

corresponds to a given hash:

if (Hash::check('plain-text', $hashedPassword)) {

    // The passwords match...

}

Determining if a Password Needs to be Rehashed

The needsRehash  method provided by the Hash  facade allows you to determine if the work factor used

by the hasher has changed since the password was hashed. Some applications perform this check during the

authentication process:

if (Hash::needsRehash($hashed)) {

    $hashed = Hash::make('plain-text');

}

Hash Algorithm Verification

To prevent hash algorithm manipulation, Laravel's Hash::check  method will first verify if the given hash

was generated using the application's selected hashing algorithm. If the algorithms are different, a

184

https://secure.php.net/manual/en/function.password-hash.php
https://secure.php.net/manual/en/function.password-hash.php


RuntimeException  will be thrown.

This is the expected behavior for most applications, where the hashing algorithm is not expected to change

and different algorithms can indicate malicious activity. However, if you need to support multiple hashing

algorithms within your application, such as when migrating from one algorithm to another, you can disable

hash algorithm verification by setting the HASH_VERIFY  environment variable to false :

HASH_VERIFY=false

185



Resetting Passwords

Introduction

Most web applications provide a way for users to reset their forgotten passwords. Rather than forcing you to

re-implement this by hand for every application you create, Laravel provides convenient services for sending

password reset links and secure resetting passwords.

Want to get started fast? Install a Laravel application starter kit in a fresh Laravel application. Laravel's starter

kits will take care of scaffolding your entire authentication system, including resetting forgotten passwords.

Configuration

Your application's password reset configuration file is stored at config/auth.php . Be sure to review the

options available to you in this file. By default, Laravel is configured to use the database  password reset

driver.

The driver  configuration option defines where password reset data will be stored. Laravel includes two

drivers:

database  - password reset data is stored in a relational database.

cache  - password reset data is stored in one of your cache-based stores.

Driver Prerequisites

Database

When using the default database  driver, a table must be created to store your application's password reset

tokens. Typically, this is included in Laravel's default 0001_01_01_000000_create_users_table.php

database migration.

Cache

There is also a cache driver available for handling password resets, which does not require a dedicated

database table. Entries are keyed by the user's email address, so ensure you are not using email addresses as a

cache key elsewhere in your application:

'passwords' => [

    'users' => [

        'driver' => 'cache',

        'provider' => 'users',

        'store' => 'passwords', // Optional...

        'expire' => 60,

        'throttle' => 60,

    ],

],

To prevent a call to artisan cache:clear  from flushing your password reset data, you can optionally

specify a separate cache store with the store  configuration key. The value should correspond to a store

configured in your config/cache.php  configuration.

Model Preparation

186



Before using the password reset features of Laravel, your application's App\Models\User  model must use

the Illuminate\Notifications\Notifiable  trait. Typically, this trait is already included on the

default App\Models\User  model created with new Laravel applications.

Next, verify that your App\Models\User  model implements the

Illuminate\Contracts\Auth\CanResetPassword  contract. The default user model included with the

framework already implements this interface and uses the

Illuminate\Auth\Passwords\CanResetPassword  trait.

Configuring Trusted Hosts

By default, Laravel responds to all requests regardless of the HTTP Host  header. The Host  header's value

is used when generating absolute URLs during a web request.

Generally, you should configure your web server (like Nginx or Apache) to only send requests matching your

hostname. If you cannot modify your web server directly and want Laravel to only respond to certain

hostnames, use the trustHosts  middleware method in your bootstrap/app.php . This is especially

important for password reset functionality.

Learn more in the TrustHosts middleware documentation.

Routing

To enable users to reset their passwords, several routes need to be defined:

Routes for requesting a password reset link via email.

Routes for handling the actual password reset after visiting the emailed link.

Requesting the Password Reset Link

The Password Reset Link Request Form

Define a route that returns the password reset request form view:

Route::get('/forgot-password', function () {

    return view('auth.forgot-password');

})->middleware('guest')->name('password.request');

This view should contain a form with an email  field for requesting a password reset link.

Handling the Form Submission

Next, define a route to handle the form submission, validate input, and send the reset link:

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Password;

Route::post('/forgot-password', function (Request $request) {

    $request->validate(['email' => 'required|email']);

    $status = Password::sendResetLink(

        $request->only('email')

    );

    return $status === Password::ResetLinkSent

        ? back()->with(['status' => __($status)])

187

https://laravel.com/docs/12.x/requests#configuring-trusted-hosts


        : back()->withErrors(['email' => __($status)]);

})->middleware('guest')->name('password.email');

Laravel's password broker will handle retrieving the user by email and sending the reset link via notifications.

Resetting the Password

The Password Reset Form

Define a route that displays the password reset form when the user clicks the reset link:

Route::get('/reset-password/{token}', function (string $token) {

    return view('auth.reset-password', ['token' => $token]);

})->middleware('guest')->name('password.reset');

This form should include fields for email , password , password_confirmation , and a hidden

token .

Handling the Reset Form Submission

Define a route that processes the password reset:

use App\Models\User;

use Illuminate\Auth\Events\PasswordReset;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Hash;

use Illuminate\Support\Facades\Password;

use Illuminate\Support\Str;

Route::post('/reset-password', function (Request $request) {

    $request->validate([

        'token' => 'required',

        'email' => 'required|email',

        'password' => 'required|min:8|confirmed',

    ]);

    $status = Password::reset(

        $request->only('email', 'password', 'password_confirmation', 'token'),

        function (User $user, string $password) {

            $user->forceFill([

                'password' => Hash::make($password)

            ])->setRememberToken(Str::random(60));

            $user->save();

            event(new PasswordReset($user));

        }

    );

    return $status === Password::PASSWORD_RESET

        ? redirect()->route('login')->with('status', __($status))

        : back()->withErrors(['email' => [__($status)]]);

})->middleware('guest')->name('password.update');

Note: Laravel's Password  facade is used to validate and process the password reset request.

Deleting Expired Tokens

188



Password reset tokens stored in the database can be cleared with:

php artisan auth:clear-resets

To automate this, add it to your task scheduler:

use Illuminate\Support\Facades\Schedule;

Schedule::command('auth:clear-resets')->everyFifteenMinutes();

Customization

Reset Link Customization

You can customize the generated reset link URL using ResetPassword::createUrlUsing() :

use App\Models\User;

use Illuminate\Auth\Notifications\ResetPassword;

/**

 * Bootstrap any application services.

 */

public function boot(): void

{

    ResetPassword::createUrlUsing(function (User $user, string $token) {

        return 'https://example.com/reset-password?token=' . $token;

    });

}

Reset Email Customization

Override the sendPasswordResetNotification()  method in your App\Models\User  model:

use App\Notifications\ResetPasswordNotification;

/**

 * Send a password reset notification to the user.

 *

 * @param  string  $token

 */

public function sendPasswordResetNotification($token): void

{

    $url = 'https://example.com/reset-password?token=' . $token;

    $this->notify(new ResetPasswordNotification($url));

}

189



Database: Getting Started

Introduction

Almost every modern web application interacts with a database. Laravel makes interacting with databases

extremely simple across a variety of supported databases using raw SQL, a fluent query builder, and the

Eloquent ORM. Currently, Laravel provides first-party support for five databases:

MariaDB 10.3+ (Version Policy)

MySQL 5.7+ (Version Policy)

PostgreSQL 10.0+ (Version Policy)

SQLite 3.26.0+

SQL Server 2017+ (Version Policy)

Additionally, MongoDB is supported via the mongodb/laravel-mongodb  package, which is officially

maintained by MongoDB. Check out the Laravel MongoDB documentation for more information.

Configuration

The configuration for Laravel's database services is located in your application's config/database.php

configuration file. In this file, you may define all of your database connections, as well as specify which

connection should be used by default. Most of the configuration options within this file are driven by the

values of your application's environment variables. Examples for most of Laravel's supported database systems

are provided in this file.

By default, Laravel's sample environment configuration is ready to use with Laravel Sail, which is a Docker

configuration for developing Laravel applications on your local machine. However, you are free to modify your

database configuration as needed for your local database.

SQLite Configuration

SQLite databases are contained within a single file on your filesystem. You can create a new SQLite database

using the touch  command in your terminal: touch database/database.sqlite . After the database

has been created, you may easily configure your environment variables to point to this database by placing the

absolute path to the database in the DB_DATABASE  environment variable:

DB_CONNECTION=sqlite

DB_DATABASE=/absolute/path/to/database.sqlite

By default, foreign key constraints are enabled for SQLite connections. If you would like to disable them, you

should set the DB_FOREIGN_KEYS  environment variable to false :

DB_FOREIGN_KEYS=false

If you use the Laravel installer to create your Laravel application and select SQLite as your database, Laravel

will automatically create a database/database.sqlite  file and run the default database migrations for

you.

Microsoft SQL Server Configuration

To use a Microsoft SQL Server database, you should ensure that you have the sqlsrv  and pdo_sqlsrv

PHP extensions installed as well as any dependencies they may require such as the Microsoft SQL ODBC

driver.

190

https://laravel.com/docs/12.x/queries
https://laravel.com/docs/12.x/eloquent
https://mariadb.org/about/#maintenance-policy
https://en.wikipedia.org/wiki/MySQL#Release_history
https://www.postgresql.org/support/versioning/
https://docs.microsoft.com/en-us/lifecycle/products/?products=sql-server
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/
https://laravel.com/docs/12.x/configuration#environment-configuration
https://laravel.com/docs/12.x/sail
https://laravel.com/docs/12.x/installation#creating-a-laravel-project
https://laravel.com/docs/12.x/migrations


Configuration Using URLs

Typically, database connections are configured using multiple configuration values such as host ,

database , username , password , etc. Each of these configuration values has its own corresponding

environment variable. This means that when configuring your database connection information on a

production server, you need to manage several environment variables.

Some managed database providers such as AWS and Heroku provide a single database "URL" that contains all

of the connection information for the database in a single string. An example database URL may look

something like the following:

mysql://root:password@127.0.0.1:3306/forge?charset=UTF-8

These URLs typically follow a standard schema convention:

driver://username:password@host:port/database?options

For convenience, Laravel supports these URLs as an alternative to configuring your database with multiple

configuration options. If the url  (or corresponding DB_URL ) configuration option is present, it will be

used to extract the database connection and credential information.

Read and Write Connections

Sometimes you may wish to use one database connection for SELECT  statements, and another for

INSERT , UPDATE , and DELETE  statements. Laravel makes this a breeze, and the proper connections

will always be used whether you are using raw queries, the query builder, or the Eloquent ORM.

To see how read / write connections should be configured, let's look at this example:

'mysql' => [

    'read' => [

        'host' => [

            '192.168.1.1',

            '196.168.1.2',

        ],

    ],

    'write' => [

        'host' => [

            '196.168.1.3',

        ],

    ],

    'sticky' => true,

    'database' => env('DB_DATABASE', 'laravel'),

    'username' => env('DB_USERNAME', 'root'),

    'password' => env('DB_PASSWORD', ''),

    'unix_socket' => env('DB_SOCKET', ''),

    'charset' => env('DB_CHARSET', 'utf8mb4'),

    'collation' => env('DB_COLLATION', 'utf8mb4_unicode_ci'),

    'prefix' => '',

    'prefix_indexes' => true,

    'strict' => true,

    'engine' => null,

    'options' => extension_loaded('pdo_mysql') ? array_filter([

        PDO::MYSQL_ATTR_SSL_CA => env('MYSQL_ATTR_SSL_CA'),

    ]) : [],

],

191



Note that three keys have been added to the configuration array: read , write , and sticky . The

read  and write  keys have array values containing a single key: host . The rest of the database options

for the read  and write  connections will be merged from the main mysql  configuration array.

You only need to place items in the read  and write  arrays if you wish to override the values from the

main mysql  array. So, in this case, 192.168.1.1  will be used as the host for the "read" connection, while

196.168.1.3  will be used for the "write" connection. The database credentials, prefix, character set, and

all other options in the main mysql  array will be shared across both connections. When multiple values

exist in the host  configuration array, a database host will be randomly chosen for each request.

The sticky  Option

The sticky  option is an optional value that can be used to allow the immediate reading of records that have

been written to the database during the current request cycle. If the sticky  option is enabled and a "write"

operation has been performed against the database during the current request cycle, any further "read"

operations will use the "write" connection. This ensures that any data written during the request cycle can be

immediately read back from the database during that same request. It is up to you to decide if this is the

desired behavior for your application.

Running SQL Queries

Once you have configured your database connection, you may run queries using the DB  facade. The DB

facade provides methods for each type of query: select , update , insert , delete , and

statement .

Running a Select Query

To run a basic SELECT  query, you may use the select  method on the DB  facade:

<?php

namespace App\Http\Controllers;

use Illuminate\Support\Facades\DB;

use Illuminate\View\View;

class UserController extends Controller

{

    /**

     * Show a list of all of the application's users.

     */

    public function index(): View

    {

        $users = DB::select('select * from users where active = ?', [1]);

        return view('user.index', ['users' => $users]);

    }

}

The first argument passed to the select  method is the SQL query, while the second argument is any

parameter bindings that need to be bound to the query. Typically, these are the values of the where  clause

constraints. Parameter binding provides protection against SQL injection.

The select  method will always return an array  of results. Each result within the array will be a PHP

stdClass  object representing a record from the database:

192



use Illuminate\Support\Facades\DB;

$users = DB::select('select * from users');

foreach ($users as $user) {

    echo $user->name;

}

Selecting Scalar Values

Sometimes your database query may result in a single, scalar value. Instead of being required to retrieve the

query's scalar result from a record object, Laravel allows you to retrieve this value directly using the scalar

method:

$burgers = DB::scalar(

    "select count(case when food = 'burger' then 1 end) as burgers from menu"

);

Selecting Multiple Result Sets

If your application calls stored procedures that return multiple result sets, you may use the

selectResultSets  method to retrieve all of the result sets returned by the stored procedure:

[$options, $notifications] = DB::selectResultSets(

    "CALL get_user_options_and_notifications(?)", $request->user()->id

);

Using Named Bindings

Instead of using ?  to represent your parameter bindings, you may execute a query using named bindings:

$results = DB::select('select * from users where id = :id', ['id' => 1]);

Running an Insert Statement

To execute an insert  statement, you may use the insert  method on the DB  facade. Like select ,

this method accepts the SQL query as its first argument and bindings as its second argument:

use Illuminate\Support\Facades\DB;

DB::insert('insert into users (id, name) values (?, ?)', [1, 'Marc']);

Running an Update Statement

The update  method should be used to update existing records in the database. The number of rows affected

by the statement is returned:

use Illuminate\Support\Facades\DB;

$affected = DB::update(

    'update users set votes = 100 where name = ?',

    ['Anita']

);

Running a Delete Statement

193



The delete  method should be used to delete records from the database. Like update , the number of

rows affected will be returned:

use Illuminate\Support\Facades\DB;

$deleted = DB::delete('delete from users');

Running a General Statement

Some database statements do not return any value. For these types of operations, you may use the

statement  method on the DB  facade:

DB::statement('drop table users');

Running an Unprepared Statement

Sometimes you may want to execute an SQL statement without binding any values. You may use the DB

facade's unprepared  method to accomplish this:

DB::unprepared('update users set votes = 100 where name = "Dries"');

Since unprepared statements do not bind parameters, they may be vulnerable to SQL injection. You should

never allow user-controlled values within an unprepared statement.

Implicit Commits

When using the DB  facade's statement  and unprepared  methods within transactions, you must be

careful to avoid statements that cause implicit commits. These statements will cause the database engine to

indirectly commit the entire transaction, leaving Laravel unaware of the database's transaction level. An

example of such a statement is creating a database table:

DB::unprepared('create table a (col varchar(1) null)');

Please refer to the MySQL manual for a list of all statements that trigger implicit commits.

Using Multiple Database Connections

If your application defines multiple connections in your config/database.php  configuration file, you

may access each connection via the connection  method provided by the DB  facade. The connection

name passed to the connection  method should correspond to one of the connections listed in your

config/database.php  or configured at runtime using the config  helper:

use Illuminate\Support\Facades\DB;

$users = DB::connection('sqlite')->select(/* ... */);

You may access the raw, underlying PDO instance of a connection using the getPdo  method on a

connection instance:

$pdo = DB::connection()->getPdo();

Listening for Query Events

If you would like to specify a closure that is invoked for each SQL query executed by your application, you may

use the DB  facade's listen  method. This can be useful for logging or debugging. Register your query

listener closure in the boot  method of a service provider:

194

https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html
https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html
https://laravel.com/docs/12.x/providers


<?php

namespace App\Providers;

use Illuminate\Database\Events\QueryExecuted;

use Illuminate\Support\Facades\DB;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{

    /**

     * Register any application services.

     */

    public function register(): void

    {

        // ...

    }

    /**

     * Bootstrap any application services.

     */

    public function boot(): void

    {

        DB::listen(function (QueryExecuted $query) {

            // $query->sql;

            // $query->bindings;

            // $query->time;

            // $query->toRawSql();

        });

    }

}

Monitoring Cumulative Query Time

A common performance bottleneck of modern web applications is the amount of time they spend querying

databases. Laravel can invoke a closure or callback when it spends too much time querying the database

during a single request.

To get started, provide a query time threshold (in milliseconds) and callback to the

whenQueryingForLongerThan  method. You may invoke this in the boot  method of a service provider:

<?php

namespace App\Providers;

use Illuminate\Database\Connection;

use Illuminate\Support\Facades\DB;

use Illuminate\Support\ServiceProvider;

use Illuminate\Database\Events\QueryExecuted;

class AppServiceProvider extends ServiceProvider

{

    /**

     * Register any application services.

     */

195

https://laravel.com/docs/12.x/providers


    public function register(): void

    {

        // ...

    }

    /**

     * Bootstrap any application services.

     */

    public function boot(): void

    {

        DB::whenQueryingForLongerThan(500, function (Connection $connection, QueryExec

            // Notify development team...

        });

    }

}

Database Transactions

You may use the transaction  method provided by the DB  facade to run a set of operations within a

database transaction. If an exception is thrown within the transaction closure, the transaction will

automatically be rolled back and the exception re-thrown. If the closure executes successfully, the transaction

will be committed automatically. You don't need to manually control rollback or commit:

use Illuminate\Support\Facades\DB;

DB::transaction(function () {

    DB::update('update users set votes = 1');

    DB::delete('delete from posts');

});

Handling Deadlocks

The transaction  method accepts an optional second argument that defines how many times a transaction

should be retried upon a deadlock. Once attempts are exhausted, an exception will be thrown:

use Illuminate\Support\Facades\DB;

DB::transaction(function () {

    DB::update('update users set votes = 1');

    DB::delete('delete from posts');

}, 5);

Manually Using Transactions

If you want to control transactions manually, you can begin a transaction with beginTransaction ,

rollback with rollBack , and commit with commit :

use Illuminate\Support\Facades\DB;

DB::beginTransaction();

try {

    // ... perform database operations

196



    DB::commit();

} catch (\Exception $e) {

    DB::rollBack();

    throw $e;

}

Connecting to the Database CLI

To connect to your database's CLI, use the db  Artisan command:

php artisan db

You can specify a connection name to connect to a specific database connection:

php artisan db mysql

Inspecting Your Databases

Use the db:show  and db:table  Artisan commands to get details about your database:

Show an overview of your database, including size, type, number of open connections, and tables:

php artisan db:show

Inspect a specific table's structure:

php artisan db:table users

You can specify the connection with the --database  option:

php artisan db:show --database=pgsql

For large databases, you can include row counts and view details with --counts  and --views .

Remember, this may be slow:

php artisan db:show --counts --views

Monitoring Your Databases

Use the db:monitor  Artisan command to dispatch an

Illuminate\Database\Events\DatabaseBusy  event if your database manages more than a specified

number of open connections:

php artisan db:monitor --databases=mysql,pgsql --max=100

Schedule this command to run every minute. When the connection count exceeds your threshold, the

DatabaseBusy  event is dispatched, and you should listen for it to send notifications.

Example listener in your AppServiceProvider :

<?php

namespace App\Providers;

use Illuminate\Support\Facades\Event;

use Illuminate\Support\Facades\Notification;

use Illuminate\Database\Events\DatabaseBusy;

197



use App\Notifications\DatabaseApproachingMaxConnections;

class AppServiceProvider extends ServiceProvider

{

    public function boot(): void

    {

        Event::listen(function (DatabaseBusy $event) {

            Notification::route('mail', 'admin@example.com')

                ->notify(new DatabaseApproachingMaxConnections(

                    $event->connectionName,

                    $event->connections

                ));

        });

    }

}

198



Hello

199



Database: Pagination

Introduction

In other frameworks, pagination can be very painful. We hope Laravel's approach to pagination will be a

breath of fresh air. Laravel's paginator is integrated with the query builder and Eloquent ORM and provides

convenient, easy-to-use pagination of database records with zero configuration.

By default, the HTML generated by the paginator is compatible with the Tailwind CSS framework; however,

Bootstrap pagination support is also available.

Tailwind

If you are using Laravel's default Tailwind pagination views with Tailwind 4.x, your application's

resources/css/app.css  file will already be properly configured to @source Laravel's pagination views:

@import 'tailwindcss';

@source '../../vendor/laravel/framework/src/Illuminate/Pagination/resources/views/*.bl

Basic Usage

Paginating Query Builder Results

There are several ways to paginate items. The simplest is by using the paginate  method on the query

builder or an Eloquent query. The paginate  method automatically takes care of setting the query's "limit"

and "offset" based on the current page being viewed by the user. By default, the current page is detected by the

value of the page  query string argument on the HTTP request. This value is automatically detected by

Laravel and inserted into links generated by the paginator.

In this example, the only argument passed to paginate  is the number of items to display per page (15):

<?php

namespace App\Http\Controllers;

use Illuminate\Support\Facades\DB;

use Illuminate\View\View;

class UserController extends Controller

{

    /**

     * Show all application users.

     */

    public function index(): View

    {

        return view('user.index', [

            'users' => DB::table('users')->paginate(15)

        ]);

    }

}

200

https://laravel.com/docs/12.x/queries
https://laravel.com/docs/12.x/eloquent
https://tailwindcss.com/
https://laravel.com/docs/12.x/queries
https://laravel.com/docs/12.x/queries
https://laravel.com/docs/12.x/eloquent


Simple Pagination

The paginate  method counts the total number of records matched before retrieving the records. If you do

not plan to show the total number of pages, you can use simplePaginate , which performs a more

efficient query:

$users = DB::table('users')->simplePaginate(15);

Paginating Eloquent Results

You can paginate Eloquent  queries similarly:

use App\Models\User;

$users = User::paginate(15);

You can also chain constraints such as where :

$users = User::where('votes', '>', 100)->paginate(15);

Similarly, for simplePaginate :

$users = User::where('votes', '>', 100)->simplePaginate(15);

And for cursor pagination:

$users = User::where('votes', '>', 100)->cursorPaginate(15);

Multiple Paginator Instances per Page

If rendering multiple paginators on a single page, they should use different query string parameters to avoid

conflict. You can specify the page parameter name:

use App\Models\User;

$users = User::where('votes', '>', 100)->paginate(15, ['*'], 'users');

Cursor Pagination

Cursor pagination improves efficiency for large datasets by constructing where  clauses based on ordered

columns, avoiding the offset  query's performance issues. It requires an "order by"  clause on the

query and columns that are unique.

Example:

$users = DB::table('users')->orderBy('id')->cursorPaginate(15);

The URL will include an encoded "cursor" string representing the pagination position, e.g.,:

http://localhost/users?cursor=eyJpZCI6MTUsIl9wb2ludHNUb05leHRJdGVtcyI6dHJ1ZX0

Note: The query must have an order by  clause on a unique column for cursor pagination.

Cursor vs. Offset Pagination

Example SQL for second page (ordered by id ):

Offset Pagination:

201

https://laravel.com/docs/12.x/eloquent


select * from users order by id asc limit 15 offset 15;

Cursor Pagination:

select * from users where id > 15 order by id asc limit 15;

Advantages of cursor pagination:

Better performance on large datasets if columns are indexed.

More consistent results with frequent writes (avoiding skipping or duplication).

Limitations of cursor pagination:

Only supports "Next" and "Previous" links.

Requires ordering by a unique column.

Cannot handle query expressions with parameters or complex expressions in order by .

Manually Creating a Paginator

You can create a paginator instance manually with items in memory:

use Illuminate\Pagination\Paginator;

use Illuminate\Pagination\LengthAwarePaginator;

use Illuminate\Pagination\CursorPaginator;

$items = [...]; // Your array of items

$paginator = new LengthAwarePaginator($items, $totalCount, $perPage, $currentPage);

Note: When manually creating, slice your array accordingly, e.g., using array_slice() .

Customizing Pagination URLs

Set the base URL of pagination links:

use App\Models\User;

Route::get('/users', function () {

    $users = User::paginate(15);

    $users->withPath('/admin/users');

    // ...

});

Appending Query String Values

Append additional query parameters to pagination links:

use App\Models\User;

Route::get('/users', function () {

    $users = User::paginate(15);

    $users->appends(['sort' => 'votes']);

    // ...

});

Or, include all current query string values:

$users = User::paginate(15)->withQueryString();

Appending Hash Fragments

202



Append a hash fragment (anchor) to links:

$users = User::paginate(15)->fragment('users');

Displaying Pagination Results

When calling paginate , you'll get an Illuminate\Pagination\LengthAwarePaginator  instance,

which is iterable and renders links via the links()  method. Example in Blade:

<div class="container">

    @foreach ($users as $user)

        {{ $user->name }}

    @endforeach

    {{ $users->links() }}

</div>

Adjusting the Pagination Link Window

Control how many page links are shown around the current page:

{{ $users->onEachSide(5)->links() }}

Converting Results to JSON

Since paginator classes implement Jsonable , you can return them directly from routes/controllers, and

they'll include meta info:

use App\Models\User;

Route::get('/users', function () {

    return User::paginate();

});

Sample JSON output:

{

  "total": 50,

  "per_page": 15,

  "current_page": 1,

  "last_page": 4,

  "current_page_url": "http://laravel.app?page=1",

  "first_page_url": "http://laravel.app?page=1",

  "last_page_url": "http://laravel.app?page=4",

  "next_page_url": "http://laravel.app?page=2",

  "prev_page_url": null,

  "path": "http://laravel.app",

  "from": 1,

  "to": 15,

  "data": [

    // Records...

  ]

}

Customizing the Pagination View

203



To override default views, publish the pagination views:

php artisan vendor:publish --tag=laravel-pagination

This copies views to resources/views/vendor/pagination .

Set default views in App\Providers\AppServiceProvider :

use Illuminate\Pagination\Paginator;

public function boot(): void

{

    Paginator::defaultView('view-name');

    Paginator::defaultSimpleView('view-name');

}

Using Bootstrap

Laravel provides Bootstrap-compatible pagination views. Enable them in AppServiceProvider :

use Illuminate\Pagination\Paginator;

public function boot(): void

{

    Paginator::useBootstrapFive();

    Paginator::useBootstrapFour();

}

Paginator / LengthAwarePaginator Instance
Methods

Method Description

$paginator->count() Get number of items on current page

$paginator->currentPage() Current page number

$paginator->firstItem() Result number of first item

$paginator->getOptions() Get options

$paginator->getUrlRange($start, $end) Generate URL range

$paginator->hasPages() Are there multiple pages?

$paginator->hasMorePages() More items remaining?

$paginator->items() Items for current page

$paginator->lastItem() Result number of last item

$paginator->lastPage() Last page number (not in simplePaginate )

$paginator->nextPageUrl() URL for next page

$paginator->onFirstPage() Is on first page?

$paginator->onLastPage() Is on last page?

$paginator->perPage() Items per page

$paginator->previousPageUrl() URL for previous page

$paginator->total() Total items (not in simplePaginate )

$paginator->url($page) URL for page number

$paginator->getPageName() Page query variable

$paginator->setPageName($name) Set page query variable

$paginator->through($callback) Transform items with callback

204



Cursor Paginator Instance Methods

Method Description

$paginator->count() Number of items on current page

$paginator->cursor() Current cursor object

$paginator->getOptions() Get options

$paginator->hasPages() Are multiple pages?

$paginator->hasMorePages() More items in dataset?

$paginator->getCursorName() Cursor query variable

$paginator->items() Items for current page

$paginator->nextCursor() Cursor for next set

$paginator->nextPageUrl() URL for next page

$paginator->onFirstPage() Is on first page?

$paginator->onLastPage() Is on last page?

$paginator->perPage() Items per page

$paginator->previousCursor() Cursor for previous set

$paginator->previousPageUrl() URL for previous page

$paginator->setCursorName() Set cursor variable

$paginator->url($cursor) URL for specific cursor

205



Database: Migrations

Introduction

Migrations are like version control for your database, allowing your team to define and share the application's

database schema definition. If you have ever had to tell a teammate to manually add a column to their local

database schema after pulling in your changes from source control, you've faced the problem that database

migrations solve.

The Laravel Schema provides database-agnostic support for creating and manipulating tables across all of

Laravel's supported database systems. Typically, migrations will use this facade to create and modify database

tables and columns.

Generating Migrations

You may use the make:migration  Artisan command to generate a database migration. The new migration

will be placed in your database/migrations  directory. Each migration filename contains a timestamp

that allows Laravel to determine the order of the migrations:

php artisan make:migration create_flights_table

Laravel will use the name of the migration to attempt to guess the name of the table and whether or not the

migration will be creating a new table. If Laravel can determine the table name from the migration name, it

will pre-fill the migration with that table. Otherwise, you can specify the table manually inside the migration.

To specify a custom path for the migration, use the --path  option:

php artisan make:migration create_flights_table --path=custom/path

Migration stubs can be customized via stub publishing.

Squashing Migrations

As your application grows, the number of migrations can become large. You can "squash" migrations into a

single SQL file with:

php artisan schema:dump

or with pruning:

php artisan schema:dump --prune

This writes a schema file to your database/schema  directory, corresponding to your current database

state. Laravel will run the schema's SQL statements before ineligible migrations during subsequent

migrate  commands.

For testing with different databases, dump schemas for each connection:

php artisan schema:dump --database=testing --prune

Commit the schema files to source control for quick initial setups.

Migration squashing is supported on MariaDB, MySQL, PostgreSQL, and SQLite using their CLI tools.

Migration Structure

206

https://laravel.com/docs/12.x/facades#schema
https://laravel.com/docs/12.x/artisan#generating-migrations
https://laravel.com/docs/12.x/artisan#stub-customization


Each migration class has two methods: up()  and down() .

The up()  method adds new tables, columns, or indexes.

The down()  method reverses these operations.

Example creates a flights  table:

<?php

use Illuminate\Database\Migrations\Migration;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Support\Facades\Schema;

return new class extends Migration

{

    public function up(): void

    {

        Schema::create('flights', function (Blueprint $table) {

            $table->id();

            $table->string('name');

            $table->string('airline');

            $table->timestamps();

        });

    }

    public function down(): void

    {

        Schema::drop('flights');

    }

};

Setting the Migration Connection

Specify a custom database connection with $connection  property:

protected $connection = 'pgsql';

Skipping Migrations

Define shouldRun()  to conditionally skip migration:

public function shouldRun(): bool

{

    return Feature::active(Flights::class);

}

Running Migrations

Execute migrations:

php artisan migrate

Check migration status:

php artisan migrate:status

Simulate SQL without executing:

207



php artisan migrate --pretend

Isolating Migration Execution

Use --isolated  to prevent multiple servers from migrating simultaneously, which uses locks:

php artisan migrate --isolated

Forcing Migrations in Production

Bypass prompts with:

php artisan migrate --force

Rolling Back Migrations

Rollback last batch:

php artisan migrate:rollback

Rollback specific steps:

php artisan migrate:rollback --step=5

Rollback specific batch:

php artisan migrate:rollback --batch=3

Simulate rollback:

php artisan migrate:rollback --pretend

Reset all migrations:

php artisan migrate:reset

Rollback and Migrate in One Command

php artisan migrate:refresh

# Or with seed

php artisan migrate:refresh --seed

Rollback limited steps:

php artisan migrate:refresh --step=5

Drop All Tables and Migrate

php artisan migrate:fresh

# or with seed

php artisan migrate:fresh --seed

Specify database connection:

php artisan migrate:fresh --database=admin

Note: Drops all tables from the connection, use cautiously.

208



Tables

Creating Tables

Use Schema::create :

Schema::create('users', function (Blueprint $table) {

    $table->id();

    $table->string('name');

    $table->string('email');

    $table->timestamps();

});

Determining Table / Column Existence

Check existence:

if (Schema::hasTable('users')) {

   // ...

}

if (Schema::hasColumn('users', 'email')) {

   // ...

}

Database Connection and Table Options

Use connection() :

Schema::connection('sqlite')->create('users', function (Blueprint $table) {

    $table->id();

});

Set engine, charset, collation:

Schema::create('users', function (Blueprint $table) {

    $table->engine('InnoDB');

    $table->charset('utf8mb4');

    $table->collation('utf8mb4_unicode_ci');

});

Create temporary table:

Schema::create('calculations', function (Blueprint $table) {

    $table->temporary();

});

Add comment:

Schema::create('calculations', function (Blueprint $table) {

    $table->comment('Business calculations');

});

Updating Tables

Use Schema::table :

209



Schema::table('users', function (Blueprint $table) {

    $table->integer('votes');

});

Renaming / Dropping Tables

Rename:

Schema::rename($from, $to);

Drop:

Schema::drop('users');

Schema::dropIfExists('users');

Renaming Tables with Foreign Keys

Ensure foreign keys have explicit names before renaming to avoid constraint issues.

Columns

Creating Columns

Use Schema::table  with Blueprint :

Schema::table('users', function (Blueprint $table) {

    $table->integer('votes');

});

Available Column Types

Supported column methods include:

Boolean: boolean()

String/Text: char() , longText() , mediumText() , string() , text() , tinyText()

Numeric: bigIncrements() , bigInteger() , decimal() , double() , float() , id() ,

increments() , integer() , mediumIncrements() , mediumInteger() ,

smallIncrements() , smallInteger() , tinyIncrements() , tinyInteger() , etc.

Date & Time: dateTime() , dateTimeTz() , date() , time() , timeTz() , timestamp() ,

timestamps() , timestampsTz() , softDeletes() , softDeletesTz() , year()

Binary: binary()

JSON: json() , jsonb()

UUID/ULID: ulid() , uuid() , etc.

Spatial: geography() , geometry()

Examples:

$table->bigIncrements('id');

$table->string('name', 100);

$table->decimal('amount', 8, 2);

$table->json('options');

Column Modifiers

Chain methods to modify columns:

210



$table->string('email')->nullable();

$table->string('address')->after('name');

$table->unsignedBigInteger('user_id')->constrained();

$table->foreignId('user_id')->constrained();

Modifiers include:

->after('column')

->autoIncrement()

->charset('utf8mb4')

->collation('utf8mb4_unicode_ci')

->comment('description')

->default($value)

->first()

->invisible()

->nullable()

->storedAs($expression)

->unsigned()

->useCurrent()

->useCurrentOnUpdate()

etc.

Default Expressions

Use new Expression()  for database-specific defaults, e.g.:

$table->json('movies')->default(new Expression('(JSON_ARRAY())'));

Column Order

Add column after an existing column:

$table->after('password', function (Blueprint $table) {

    $table->string('address_line1');

    $table->string('address_line2');

    $table->string('city');

});

Modifying Columns

Change existing column:

Schema::table('users', function (Blueprint $table) {

    $table->string('name', 50)->change();

});

Must specify all attributes you want to keep explicitly.

Renaming Columns

Schema::table('users', function (Blueprint $table) {

    $table->renameColumn('from', 'to');

});

Dropping Columns

211



Schema::table('users', function (Blueprint $table) {

    $table->dropColumn('votes');

});

// Multiple columns:

Schema::table('users', function (Blueprint $table) {

    $table->dropColumn(['votes', 'avatar', 'location']);

});

Alias Commands for Dropping Common Columns

$table->dropMorphs('morphable');

$table->dropRememberToken();

$table->dropSoftDeletes();

$table->dropTimestamps();

etc.

Indexes

Creating Indexes

Create unique, index, fulltext, spatial indexes:

Schema::table('users', function (Blueprint $table) {

    $table->string('email')->unique();

    $table->index('state');

    $table->fullText('body');

    $table->fullText('body')->language('english');

});

Chain methods:

$table->unique('email');

$table->index(['account_id', 'created_at']);

Specify index name:

$table->unique('email', 'unique_email');

Supported Index Types

Primary: $table->primary('id');

Composite: $table->primary(['id', 'parent_id']);

Unique: $table->unique('email');

Index: $table->index('state');

Full text: $table->fullText('body'); , with language

Spatial: $table->spatialIndex('location');

Renaming Indexes

$table->renameIndex('from', 'to');

Dropping Indexes

Use dropPrimary() , dropUnique() , dropIndex() :

212



$table->dropPrimary('users_id_primary');

$table->dropUnique('users_email_unique');

$table->dropIndex('geo_state_index');

Drop multiple columns index:

$table->dropIndex(['state']); // index name is generated

Foreign Keys

Add foreign key:

Schema::table('posts', function (Blueprint $table) {

    $table->unsignedBigInteger('user_id');

    $table->foreign('user_id')->references('id')->on('users');

});

Simpler syntax:

Schema::table('posts', function (Blueprint $table) {

    $table->foreignId('user_id')->constrained();

});

Specify custom table or name:

$table->foreignId('user_id')->constrained('users', 'posts_user_id');

Set "on delete" / "on update" actions:

$table->foreignId('user_id')

    ->constrained()

    ->onUpdate('cascade')

    ->onDelete('cascade');

Use fluent methods for actions:

cascadeOnUpdate()

restrictOnUpdate()

nullOnUpdate()

noActionOnUpdate()

cascadeOnDelete()

etc.

Order of modifiers must be before constrained() :

$table->foreignId('user_id')->nullable()->constrained();

Dropping Foreign Keys

By constraint name:

$table->dropForeign('posts_user_id_foreign');

By column name:

$table->dropForeign(['user_id']);

Toggling Foreign Key Constraints

213



Enable/disable within migrations:

Schema::enableForeignKeyConstraints();

Schema::disableForeignKeyConstraints();

Schema::withoutForeignKeyConstraints(function () {

    // constraints are disabled within this closure

});

Note: SQLite disables foreign keys by default; enable in config.

Events

Migration events extend Illuminate\Database\Events\MigrationEvent :

MigrationsStarted

MigrationsEnded

MigrationStarted

MigrationEnded

NoPendingMigrations

SchemaDumped

SchemaLoaded

214



Database: Seeding - Laravel 12.x -
The PHP Framework For Web
Artisans

Table of Contents

Introduction

Writing Seeders

Using Model Factories

Calling Additional Seeders

Muting Model Events

Running Seeders

Introduction

Laravel includes the ability to seed your database with data using seed classes. All seed classes are stored in

the database/seeders  directory. By default, a DatabaseSeeder  class is defined for you. From this

class, you may use the call  method to run other seed classes, allowing you to control the seeding order.

Mass assignment protection is automatically disabled during database seeding.

Writing Seeders

To generate a seeder, execute the make:seeder  Artisan command. All seeders generated by the framework

will be placed in the database/seeders  directory:

php artisan make:seeder UserSeeder

A seeder class only contains one method by default: run . This method is called when the db:seed

Artisan command is executed. Within the run  method, you may insert data into your database — using the

query builder or Eloquent model factories.

Example of modifying the default DatabaseSeeder  class:

<?php

namespace Database\Seeders;

use Illuminate\Database\Seeder;

use Illuminate\Support\Facades\DB;

use Illuminate\Support\Facades\Hash;

use Illuminate\Support\Str;

class DatabaseSeeder extends Seeder

{

    /**

     * Run the database seeders.

     */

    public function run(): void

215

https://laravel.com/docs/12.x/eloquent#mass-assignment
https://laravel.com/docs/12.x/artisan
https://laravel.com/docs/12.x/artisan
https://laravel.com/docs/12.x/queries
https://laravel.com/docs/12.x/database-testing


    {

        DB::table('users')->insert([

            'name' => Str::random(10),

            'email' => Str::random(10) . '@example.com',

            'password' => Hash::make('password'),

        ]);

    }

}

You may type-hint any dependencies you need within the run  method's signature. They will automatically

be resolved via the Laravel service container.

Using Model Factories

Instead of manually specifying attributes, you can use model factories to generate large amounts of related

data. First, review the factory documentation to define factories.

Example: creating 50 users each with one related post:

use App\Models\User;

/**

 * Run the database seeders.

 */

public function run(): void

{

    User::factory()

        ->count(50)

        ->hasPosts(1)

        ->create();

}

Calling Additional Seeders

Within the DatabaseSeeder  class, you can use the call  method to execute other seed classes:

$this->call([

    UserSeeder::class,

    PostSeeder::class,

    CommentSeeder::class,

]);

Muting Model Events

While running seeds, you might want to prevent models from dispatching events. Use the

WithoutModelEvents  trait:

<?php

namespace Database\Seeders;

use Illuminate\Database\Seeder;

use Illuminate\Database\Console\Seeds\WithoutModelEvents;

class DatabaseSeeder extends Seeder

216

https://laravel.com/docs/12.x/container
https://laravel.com/docs/12.x/eloquent-factories


{

    use WithoutModelEvents;

    /**

     * Run the database seeders.

     */

    public function run(): void

    {

        $this->call([

            UserSeeder::class,

        ]);

    }

}

Running Seeders

Execute the db:seed  Artisan command to seed your database. By default, it runs the DatabaseSeeder

class, which can invoke others. Use the --class  option to run a specific seeder:

php artisan db:seed

php artisan db:seed --class=UserSeeder

You may also run the migrate:fresh  command with the --seed  option, which drops all tables and

reruns migrations:

php artisan migrate:fresh --seed

php artisan migrate:fresh --seed --seeder=UserSeeder

Forcing Seeders to Run in Production

Some operations may alter or delete data. To prevent accidental execution in production, Laravel prompts for

confirmation unless you specify the --force  flag:

php artisan db:seed --force

217



Hello

218



MongoDB

Introduction

MongoDB is one of the most popular NoSQL document-oriented databases, used for its high write load (useful

for analytics or IoT) and high availability (easy to set replica sets with automatic failover). It can also shard the

database easily for horizontal scalability and has a powerful query language for doing aggregation, text search

or geospatial queries.

Instead of storing data in tables of rows or columns like SQL databases, each record in a MongoDB database is

a document described in BSON, a binary representation of the data. Applications can then retrieve this

information in a JSON format. It supports a wide variety of data types, including documents, arrays,

embedded documents, and binary data.

Before using MongoDB with Laravel, we recommend installing and using the mongodb/laravel-mongodb

package via Composer. The laravel-mongodb  package is officially maintained by MongoDB, and while

MongoDB is natively supported by PHP through the MongoDB driver, the Laravel MongoDB package provides a

richer integration with Eloquent and other Laravel features:

composer require mongodb/laravel-mongodb

Installation

MongoDB Driver

To connect to a MongoDB database, the mongodb  PHP extension is required. If you are developing locally

using Laravel Herd or installed PHP via php.new , you already have this extension installed on your system.

However, if you need to install the extension manually, you may do so via PECL:

pecl install mongodb

For more information on installing the MongoDB PHP extension, check out the MongoDB PHP extension

installation instructions.

Starting a MongoDB Server

The MongoDB Community Server can be used to run MongoDB locally and is available for installation on

Windows, macOS, Linux, or as a Docker container. To learn how to install MongoDB, please refer to the official

MongoDB Community installation guide.

The connection string for the MongoDB server can be set in your .env  file:

MONGODB_URI="mongodb://localhost:27017"

MONGODB_DATABASE="laravel_app"

For hosting MongoDB in the cloud, consider using MongoDB Atlas. To access a MongoDB Atlas cluster locally

from your application, you will need to add your own IP address in the cluster's network settings to the

project's IP Access List.

The connection string for MongoDB Atlas can also be set in your .env  file:

MONGODB_URI="mongodb+srv://<username>:<password>@<cluster>.mongodb.net/<dbname>?retryW

MONGODB_DATABASE="laravel_app"

219

https://www.mongodb.com/resources/products/fundamentals/why-use-mongodb
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/
https://herd.laravel.com/
https://www.php.net/manual/en/mongodb.installation.php
https://www.php.net/manual/en/mongodb.installation.php
https://docs.mongodb.com/manual/administration/install-community/
https://docs.mongodb.com/manual/administration/install-community/
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/docs/atlas/security/add-ip-address-to-list/


Install the Laravel MongoDB Package

Finally, use Composer to install the Laravel MongoDB package:

composer require mongodb/laravel-mongodb

This package installation will fail if the mongodb  PHP extension is not installed. The PHP configuration can

differ between the CLI and the web server, so ensure the extension is enabled in both configurations.

Configuration

You can configure your MongoDB connection via your application's config/database.php  file. Add a

mongodb  connection that utilizes the mongodb  driver:

'connections' => [

    'mongodb' => [

        'driver' => 'mongodb',

        'dsn' => env('MONGODB_URI', 'mongodb://localhost:27017'),

        'database' => env('MONGODB_DATABASE', 'laravel_app'),

    ],

],

Features

Once your configuration is complete, you can utilize the mongodb  package and database connection in your

application to leverage various powerful features:

Using Eloquent: Models can be stored in MongoDB collections. The package supports embedded

relationships and direct access to the MongoDB driver for raw queries and aggregation pipelines.

Write complex queries: Use the query builder for advanced queries.

The MongoDB cache driver is optimized to leverage MongoDB features like TTL indexes to automatically

clear expired cache entries.

Dispatch and process queued jobs with the MongoDB queue driver.

Storing files in GridFS, via the GridFS Adapter for Flysystem.

Most third-party packages that use a database connection or Eloquent can be compatible with MongoDB.

To learn more on how to effectively use MongoDB with Laravel, refer to the MongoDB Quick Start guide.

220

https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/eloquent-models/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/query-builder/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/cache/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/queues/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/filesystems/
https://flysystem.thephpleague.com/docs/adapter/gridfs/
https://www.mongodb.com/docs/drivers/php/laravel-mongodb/current/quick-start/


Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

221

https://example.com/
https://example.com/


Hello

222



Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

223

https://example.com/


Hello

224



Eloquent: API Resources

Introduction

When building an API, you may need a transformation layer that sits between your Eloquent models and the

JSON responses that are actually returned to your application's users. For example, you may wish to display

certain attributes for a subset of users and not others, or you may wish to always include certain relationships

in the JSON representation of your models. Eloquent's resource classes allow you to expressively and easily

transform your models and model collections into JSON.

Of course, you may always convert Eloquent models or collections to JSON using their toJson  methods;

however, Eloquent resources provide more granular and robust control over the JSON serialization of your

models and their relationships.

Generating Resources

To generate a resource class, use the make:resource  Artisan command. By default, resources are placed

in app/Http/Resources . Resources extend the

Illuminate\Http\Resources\Json\JsonResource  class:

php artisan make:resource UserResource

Resource Collections

In addition to individual model transformations, you can generate resource classes responsible for

transforming collections of models. This allows your JSON responses to include links and meta information

relevant to an entire collection.

Create a collection resource with the --collection  flag or by including the word Collection  in the

resource name. Collection resources extend

Illuminate\Http\Resources\Json\ResourceCollection :

php artisan make:resource User --collection

php artisan make:resource UserCollection

Concept Overview

A resource class represents a single model to be transformed into JSON. Here's a simple example:

<?php

namespace App\Http\Resources;

use Illuminate\Http\Request;

use Illuminate\Http\Resources\Json\JsonResource;

class UserResource extends JsonResource

{

    /**

     * Transform the resource into an array.

     *

     * @return array<string, mixed>

225



     */

    public function toArray(Request $request): array

    {

        return [

            'id' => $this->id,

            'name' => $this->name,

            'email' => $this->email,

            'created_at' => $this->created_at,

            'updated_at' => $this->updated_at,

        ];

    }

}

The toArray  method returns an array of attributes to be serialized into JSON. You can access model

properties directly via $this .

Returning Resources From Routes

Resources are returned by instantiating the resource class with a model instance:

use App\Http\Resources\UserResource;

use App\Models\User;

Route::get('/user/{id}', function (string $id) {

    return new UserResource(User::findOrFail($id));

});

Using toResource()  Method

For convenience, models can implement a toResource()  method, which Laravel will automatically use to

discover the appropriate resource:

return User::findOrFail($id)->toResource();

// The resource class, e.g., User, should define:

public function toResource()

{

    return new UserResource($this);

}

Resource Collections

When returning a collection or paginated response, use the collection()  method:

use App\Http\Resources\UserResource;

use App\Models\User;

Route::get('/users', function () {

    return UserResource::collection(User::all());

});

Alternatively, use the collection's toResourceCollection  method, which Laravel auto-discovers:

return User::all()->toResourceCollection();

Custom Resource Collections

226



To include custom meta data, create your own resource collection class:

<?php

namespace App\Http\Resources;

use Illuminate\Http\Request;

use Illuminate\Http\Resources\Json\ResourceCollection;

class UserCollection extends ResourceCollection

{

    /**

     * Transform the resource collection into an array.

     *

     * @return array<string, mixed>

     */

    public function toArray(Request $request): array

    {

        return [

            'data' => $this->collection,

            'links' => [

                'self' => 'link-value',

            ],

        ];

    }

}

Return it from routes/controllers:

use App\Http\Resources\UserCollection;

use App\Models\User;

Route::get('/users', function () {

    return new UserCollection(User::all());

});

Custom collections can override with()  to add additional meta data:

public function with(Request $request): array

{

    return [

        'meta' => [

            'key' => 'value',

        ],

    ];

}

Data Wrapping

Outermost resources are wrapped in a data  key by default. To disable this globally:

namespace App\Providers;

use Illuminate\Http\Resources\Json\JsonResource;

use Illuminate\Support\ServiceProvider;

227



class AppServiceProvider extends ServiceProvider

{

    public function boot()

    {

        JsonResource::withoutWrapping();

    }

}

This affects only the outermost response. Manually added data  keys remain unaffected.

Wrapping Nested Resources

You can control how relationships are wrapped. Laravel will never double-wrap resources unintentionally,

regardless of nesting.

For example, a collection class:

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\ResourceCollection;

class CommentsCollection extends ResourceCollection

{

    /**

     * Transform the collection into an array.

     *

     * @return array<string, mixed>

     */

    public function toArray(Request $request): array

    {

        return ['data' => $this->collection];

    }

}

Data Wrapping and Pagination

Paginated responses are always wrapped in data , with meta  and links  indicating paginator state,

regardless of withoutWrapping() :

{

  "data": [

    {"id": 1, "name": "Eladio Schroeder Sr.", "email": "example@example.com"},

    {"id": 2, "name": "Liliana Mayert", "email": "example2@example.com"}

  ],

  "links": {...},

  "meta": {...}

}

To disable wrapping for paginated responses, override withResponse()  in your resource:

public function withResponse(Request $request, JsonResponse $response): void

{

    $response->headers->set('X-Value', 'True');

}

228



Wrapping Nested Resources

You can wrap relationships in a data  key globally by defining resource classes that return data within that

key.

Laravel prevents double-wrapping even with nested collection classes.

Data Wrapping and Pagination Details

Paginated responses include meta  and links . You can customize them via a

paginationInformation()  method receiving paginator data:

public function paginationInformation($request, $paginated, $default)

{

    $default['links']['custom'] = 'https://example.com';

    return $default;

}

Conditional Attributes

Include attributes only if certain conditions are met using methods like when() :

public function toArray(Request $request): array

{

    return [

        'id' => $this->id,

        'name' => $this->name,

        'email' => $this->email,

        'secret' => $this->when($request->user()->isAdmin(), 'secret-value'),

        'created_at' => $this->created_at,

        'updated_at' => $this->updated_at,

    ];

}

when()  also accepts a closure:

'secret' => $this->when($request->user()->isAdmin(), function() {

    return 'secret-value';

}),

Methods like whenHas() , whenNotNull() , and mergeWhen()  enable conditional inclusion based on

attribute presence, nullity, or shared conditions.

Conditional Relationships

Include relationships only if loaded using whenLoaded() :

public function toArray(Request $request): array

{

    return [

        'id' => $this->id,

        'name' => $this->name,

        'email' => $this->email,

        'posts' => PostResource::collection($this->whenLoaded('posts')),

229



        'created_at' => $this->created_at,

        'updated_at' => $this->updated_at,

    ];

}

Relationship Counts

Include counts conditionally:

public function toArray(Request $request): array

{

    return [

        'id' => $this->id,

        'name' => $this->name,

        'email' => $this->email,

        'posts_count' => $this->whenCounted('posts'),

        'created_at' => $this->created_at,

        'updated_at' => $this->updated_at,

    ];

}

Use whenAggregated()  for aggregate functions like avg , sum , min , max :

'words_avg' => $this->whenAggregated('posts', 'words', 'avg'),

'words_sum' => $this->whenAggregated('posts', 'words', 'sum'),

Conditional Pivot Data

Include pivot table data with whenPivotLoaded() :

public function toArray(Request $request): array

{

    return [

        'id' => $this->id,

        'name' => $this->name,

        'expires_at' => $this->whenPivotLoaded('role_user', function() {

            return $this->pivot->expires_at;

        }),

    ];

}

For custom pivot attributes:

public function toArray(Request $request): array

{

    return [

        'expires_at' => $this->whenPivotLoaded(new Membership, function() {

            return $this->pivot->expires_at;

        }),

    ];

}

Or, if the pivot attribute uses a custom accessor:

public function toArray(Request $request): array

{

    return [

230



        'expires_at' => $this->whenPivotLoadedAs('subscription', 'role_user', function

            return $this->subscription->expires_at;

        }),

    ];

}

Adding Meta Data

Add custom meta info in toArray() :

public function toArray(Request $request): array

{

    return [

        'data' => $this->collection,

        'links' => [

            'self' => 'link-value',

        ],

    ];

}

Or add top-level meta data in with() :

public function with(Request $request): array

{

    return [

        'meta' => [

            'key' => 'value',

        ],

    ];

}

You can also add meta info when constructing resources via additional() :

return User::all()

    ->load('roles')

    ->toResourceCollection()

    ->additional(['meta' => ['key' => 'value']]);

Resource Responses

Resources can be returned directly from routes/controllers:

use App\Models\User;

Route::get('/user/{id}', function (string $id) {

    return User::findOrFail($id)->toResource();

});

You can modify the outgoing HTTP response using response()  chaining:

use App\Http\Resources\UserResource;

Route::get('/user', function () {

    return User::find(1)

        ->toResource()

        ->response()

231



        ->header('X-Value', 'True');

});

Alternatively, define a withResponse()  method within the resource class:

public function withResponse(Request $request, JsonResponse $response): void

{

    $response->header('X-Value', 'True');

}

<?php

namespace App\Http\Resources;

use Illuminate\Http\JsonResponse;

use Illuminate\Http\Request;

use Illuminate\Http\Resources\Json\JsonResource;

class UserResource extends JsonResource

{

    public function toArray(Request $request): array

    {

        return ['id' => $this->id];

    }

    public function withResponse(Request $request, JsonResponse $response): void

    {

        $response->header('X-Value', 'True');

    }

}

232



Eloquent: Serialization

Introduction

When building APIs using Laravel, you will often need to convert your models and relationships to arrays or

JSON. Eloquent includes convenient methods for making these conversions, as well as controlling which

attributes are included in the serialized representation of your models.

For an even more robust way of handling Eloquent model and collection JSON serialization, check out the

documentation on Eloquent API resources.

Serializing Models and Collections

Serializing to Arrays

To convert a model and its loaded relationships to an array, you should use the toArray  method. This

method is recursive, so all attributes and all relations (including the relations of relations) will be converted to

arrays:

use App\Models\User;

$user = User::with('roles')->first();

return $user->toArray();

The attributesToArray  method may be used to convert a model's attributes to an array but not its

relationships:

$user = User::first();

return $user->attributesToArray();

You may also convert entire collections of models to arrays by calling the toArray  method on the collection

instance:

$users = User::all();

return $users->toArray();

Serializing to JSON

To convert a model to JSON, use the toJson  method. Like toArray , the toJson  method is recursive,

so all attributes and relations will be converted to JSON. You can also specify JSON encoding options supported

by PHP:

use App\Models\User;

$user = User::find(1);

return $user->toJson();

return $user->toJson(JSON_PRETTY_PRINT);

233

https://laravel.com/docs/12.x/eloquent-resources
https://laravel.com/docs/12.x/eloquent-relationships
https://laravel.com/docs/12.x/eloquent-collections


Alternatively, you may cast a model or collection to a string, which will automatically call the toJson

method:

return (string) User::find(1);

Since models and collections are converted to JSON when cast to a string, you can return Eloquent objects

directly from your application's routes or controllers:

Route::get('/users', function () {

    return User::all();

});

Relationships

When an Eloquent model is converted to JSON, its loaded relationships will automatically be included as

attributes on the JSON object. Also, though Eloquent relationship methods are defined using "camel case"

method names, a relationship's JSON attribute will be "snake case".

Hiding Attributes From JSON

Sometimes you may wish to limit the attributes, such as passwords, that are included in your model's array or

JSON representation. To do so, add a $hidden  property to your model. Attributes listed in the $hidden

array will not be included in the serialized representation:

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{

    /**

     * The attributes that should be hidden for serialization.

     *

     * @var array<string>

     */

    protected $hidden = ['password'];

}

To hide relationships, add the relationship's method name to your model's $hidden  property.

Alternatively, you may use the $visible  property to define an "allow list" of attributes that should be

included in your model's array and JSON representation. All attributes not present in the $visible  array

will be hidden:

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{

    /**

     * The attributes that should be visible in arrays.

234



     *

     * @var array

     */

    protected $visible = ['first_name', 'last_name'];

}

Temporarily Modifying Attribute Visibility

If you wish to make some typically hidden attributes visible on a specific model instance, use the

makeVisible  method:

return $user->makeVisible('attribute')->toArray();

Similarly, to hide attributes that are typically visible, use the makeHidden  method:

return $user->makeHidden('attribute')->toArray();

To override all visible or hidden attributes temporarily, use setVisible  and setHidden :

return $user->setVisible(['id', 'name'])->toArray();

return $user->setHidden(['email', 'password', 'remember_token'])->toArray();

Appending Values to JSON

Occasionally, you may want to add attributes that do not have a corresponding database column. Define an

accessor for the value:

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Casts\Attribute;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{

    /**

     * Determine if the user is an administrator.

     */

    protected function isAdmin(): Attribute

    {

        return new Attribute(

            get: fn () => 'yes',

        );

    }

}

To ensure the accessor is always included in the model's array and JSON outputs, add its name to the

$appends  property:

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

235

https://laravel.com/docs/12.x/eloquent-mutators#attribute-casting


class User extends Model

{

    /**

     * The accessors to append to the model's array form.

     *

     * @var array

     */

    protected $appends = ['is_admin'];

}

Once added to $appends , the attribute will be included in both array and JSON forms, respecting

$visible  and $hidden  settings.

Appending at Run Time

At runtime, you can instruct a model instance to append additional attributes:

return $user->append('is_admin')->toArray();

return $user->setAppends(['is_admin'])->toArray();

Date Serialization

Customizing the Default Date Format

Override the serializeDate  method to customize date serialization:

/**

 * Prepare a date for array / JSON serialization.

 */

protected function serializeDate(DateTimeInterface $date): string

{

    return $date->format('Y-m-d');

}

Customizing the Date Format per Attribute

Specify the date format in your model's $casts  property:

protected function casts(): array

{

    return [

        'birthday' => 'date:Y-m-d',

        'joined_at' => 'datetime:Y-m-d H:00',

    ];

}

236



Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

World

1. Hello

2. World

Hello World

237

https://example.com/


Testing: Getting Started

Introduction

Laravel is built with testing in mind. In fact, support for testing with Pest and PHPUnit is included out of the

box, and a phpunit.xml  file is already set up for your application. The framework also ships with

convenient helper methods that allow you to expressively test your applications.

By default, your application's tests  directory contains two directories: Feature and Unit.

Unit tests focus on a very small, isolated portion of your code, usually a single method. They do not boot

your Laravel application and can't access database or framework services.

Feature tests can test larger portions, including interactions of multiple objects or full HTTP requests,

such as to a JSON endpoint.

Generally, most of your tests should be feature tests as they provide the most confidence that your

system functions as intended.

An ExampleTest.php  is provided in both directories. After installing Laravel, run tests with:

vendor/bin/pest

vendor/bin/phpunit

php artisan test

Environment

When testing, Laravel automatically sets the configuration environment to testing  as specified in

phpunit.xml . It also configures the session and cache to use the array  driver so no data persists during

testing.

You can customize environment variables in phpunit.xml , but remember to clear config cache with php

artisan config:clear  before testing.

The .env.testing  Environment File

Create a .env.testing  file in the root. It will be used instead of .env  when running tests with Pest,

PHPUnit, or Artisan commands with --env=testing .

Creating Tests

Use the make:test  Artisan command. Tests default to tests/Feature :

php artisan make:test UserTest

To create in tests/Unit , add --unit :

php artisan make:test UserTest --unit

Test stubs can be customized via stub publishing.

Once generated, define your tests as usual in Pest or PHPUnit. Run with:

vendor/bin/pest

vendor/bin/phpunit

238

https://pestphp.com/
https://phpunit.de/
https://laravel.com/docs/12.x/configuration#environment-configuration
https://laravel.com/docs/12.x/artisan#stub-customization


php artisan test

Example:

<?php

test('basic', function () {

    expect(true)->toBeTrue();

});

or in PHPUnit:

<?php

namespace Tests\Unit;

use PHPUnit\Framework\TestCase;

class ExampleTest extends TestCase

{

    /**

     * A basic test example.

     */

    public function test_basic_test(): void

    {

        $this->assertTrue(true);

    }

}

Call parent::setUp()  / parent::tearDown()  if overriding these methods in custom test classes to

ensure proper setup/cleanup.

Running Tests

You can run tests via Pest or PHPUnit:

./vendor/bin/pest

./vendor/bin/phpunit

Or using the Artisan command for verbose output:

php artisan test

Other arguments for pest  or phpunit  can be passed to php artisan test , e.g.,

php artisan test --testsuite=Feature --stop-on-failure

Running Tests in Parallel

To reduce test suite time, install the brianium/paratest  package:

composer require brianium/paratest --dev

Run tests in parallel:

php artisan test --parallel

By default, Laravel creates as many processes as CPU cores. Adjust with --processes :

239



php artisan test --parallel --processes=4

Note: Some options like --do-not-cache-result  are unavailable with parallel tests.

Parallel Testing and Databases

Laravel manages creating and migrating a test database per process, suffixed with a token (e.g.,

your_db_test_1 , your_db_test_2 ).

To force recreation of test databases:

php artisan test --parallel --recreate-databases

Parallel Testing Hooks

Use the ParallelTesting  facade to prepare resources for each test process:

<?php

namespace App\Providers;

use Illuminate\Support\Facades\Artisan;

use Illuminate\Support\Facades\ParallelTesting;

use Illuminate\Support\ServiceProvider;

use PHPUnit\Framework\TestCase;

class AppServiceProvider extends ServiceProvider

{

    public function boot(): void

    {

        ParallelTesting::setUpProcess(function (int $token) {

            // Setup code for each process

        });

        ParallelTesting::setUpTestCase(function (int $token, TestCase $testCase) {

            // Setup before test case

        });

        ParallelTesting::setUpTestDatabase(function (string $database, int $token) {

            Artisan::call('db:seed');

        });

        ParallelTesting::tearDownTestCase(function (int $token, TestCase $testCase) {

            // Cleanup after test case

        });

        ParallelTesting::tearDownProcess(function (int $token) {

            // Cleanup after process

        });

    }

}

Accessing the Parallel Testing Token

Retrieve the current process's token with:

$token = ParallelTesting::token();

240



Reporting Test Coverage

Use --coverage  when running tests:

php artisan test --coverage

Enforcing Minimum Coverage Threshold

Specify with --min :

php artisan test --coverage --min=80.3

Profiling Tests

Use --profile  to list the slowest ten tests:

php artisan test --profile

241



Hello

242



Console Tests

Introduction

In addition to simplifying HTTP testing, Laravel provides a simple API for testing your application's custom

console commands.

Success / Failure Expectations

To get started, let's explore how to make assertions regarding an Artisan command's exit code. To accomplish

this, we will use the artisan  method to invoke an Artisan command from our test. Then, we will use the

assertExitCode  method to assert that the command completed with a given exit code:

test('console command', function () {

    $this->artisan('inspire')->assertExitCode(0);

});

You may use the assertNotExitCode  method to assert that the command did not exit with a given exit

code:

$this->artisan('inspire')->assertNotExitCode(1);

Of course, all terminal commands typically exit with a status code of 0  when they are successful and a non-

zero exit code when they are not successful. Therefore, for convenience, you may utilize the

assertSuccessful  and assertFailed  assertions to assert that a given command exited with a

successful exit code or not:

$this->artisan('inspire')->assertSuccessful();

$this->artisan('inspire')->assertFailed();

Input / Output Expectations

Laravel allows you to easily "mock" user input for your console commands using the expectsQuestion

method. In addition, you may specify the exit code and text that you expect to be output by the console

command using the assertExitCode  and expectsOutput  methods. For example, consider the

following console command:

Artisan::command('question', function () {

    $name = $this->ask('What is your name?');

    $language = $this->choice('Which language do you prefer?', [

        'PHP',

        'Ruby',

        'Python',

    ]);

    $this->line('Your name is '.$name.' and you prefer '.$language.'.');

});

You may test this command with the following test:

243

https://laravel.com/docs/12.x/artisan
https://laravel.com/docs/12.x/artisan


test('console command', function () {

    $this

        ->expectsQuestion('What is your name?', 'Taylor Otwell')

        ->expectsQuestion('Which language do you prefer?', 'PHP')

        ->expectsOutput('Your name is Taylor Otwell and you prefer PHP.')

        ->doesntExpectOutput('Your name is Taylor Otwell and you prefer Ruby.')

        ->assertExitCode(0);

});

You may also assert that a console command does not generate any output using the

doesntExpectOutput  method:

$this->artisan('example')

    ->doesntExpectOutput()

    ->assertExitCode(0);

The expectsOutputToContain  and doesntExpectOutputToContain  methods may be used to make

assertions against a portion of the output:

test('console command', function () {

    $this

        ->expectsOutputToContain('Taylor')

        ->assertExitCode(0);

});

Confirmation Expectations

When writing a command which expects confirmation in the form of a "yes" or "no" answer, you may utilize

the expectsConfirmation  method:

$this->artisan('module:import')

    ->expectsConfirmation('Do you really wish to run this command?', 'no')

    ->assertExitCode(1);

Table Expectations

If your command displays a table of information using Artisan's table  method, it can be cumbersome to

write output expectations for the entire table. Instead, you may use the expectsTable  method. This

method accepts the table's headers as its first argument and the table's data as its second argument:

$this->artisan('users:all')

    ->expectsTable(['ID', 'Email'], [

        [1, 'user1@example.com'],

        [2, 'user2@example.com'],

    ]);

Console Events

By default, the Illuminate\Console\Events\CommandStarting  and

Illuminate\Console\Events\CommandFinished  events are not dispatched while running your

application's tests. However, you can enable these events for a given test class by adding the

Illuminate\Foundation\Testing\WithConsoleEvents  trait to the class:

<?php

244



namespace Tests\Feature;

use Illuminate\Foundation\Testing\WithConsoleEvents;

use Tests\TestCase;

class ConsoleEventTest extends TestCase

{

    use WithConsoleEvents;

    // ...

}

On this page

Introduction

Success / Failure Expectations

Input / Output Expectations

Console Events

245



Hello

246



Database Testing

Introduction

Laravel provides a variety of helpful tools and assertions to make it easier to test your database driven

applications. In addition, Laravel model factories and seeders make it painless to create test database records

using your application's Eloquent models and relationships. We'll discuss all of these powerful features in the

following documentation.

Resetting the Database After Each Test

Before proceeding much further, let's discuss how to reset your database after each of your tests so that data

from a previous test does not interfere with subsequent tests. Laravel's included

Illuminate\Foundation\Testing\RefreshDatabase  trait will take care of this for you. Simply use

the trait on your test class:

<?php

use Illuminate\Foundation\Testing\RefreshDatabase;

uses(RefreshDatabase::class);

test('basic example', function () {

    $response = $this->get('/');

    // ...

});

Or in a more traditional test class:

<?php

namespace Tests\Feature;

use Illuminate\Foundation\Testing\RefreshDatabase;

use Tests\TestCase;

class ExampleTest extends TestCase

{

    use RefreshDatabase;

    /**

     * A basic functional test example.

     */

    public function test_basic_example(): void

    {

        $response = $this->get('/');

        // ...

    }

}

247



The Illuminate\Foundation\Testing\RefreshDatabase  trait does not migrate your database if

your schema is up to date. Instead, it will only execute the test within a database transaction. Therefore, any

records added to the database by test cases that do not use this trait may still exist in the database.

If you would like to totally reset the database, you may use the

Illuminate\Foundation\Testing\DatabaseMigrations  or

Illuminate\Foundation\Testing\DatabaseTruncation  traits instead. However, both of these

options are significantly slower than the RefreshDatabase  trait.

Model Factories

When testing, you may need to insert a few records into your database before executing your test. Instead of

manually specifying the value of each column when you create this test data, Laravel allows you to define a set

of default attributes for each of your Eloquent models using model factories.

To learn more about creating and utilizing model factories to create models, please consult the complete

model factory documentation. Once you have defined a model factory, you may utilize the factory within your

test to create models:

use App\Models\User;

test('models can be instantiated', function () {

    $user = User::factory()->create();

    // ...

});

Alternatively, in a traditional test method:

use App\Models\User;

public function test_models_can_be_instantiated(): void

{

    $user = User::factory()->create();

    // ...

}

Running Seeders

If you would like to use database seeders to populate your database during a feature test, you may invoke the

seed  method. By default, the seed  method will execute the DatabaseSeeder , which should execute

all of your other seeders. Alternatively, you pass a specific seeder class name to the seed  method:

<?php

use Database\Seeders\OrderStatusSeeder;

use Database\Seeders\TransactionStatusSeeder;

use Illuminate\Foundation\Testing\RefreshDatabase;

uses(RefreshDatabase::class);

test('orders can be created', function () {

    // Run the DatabaseSeeder...

    $this->seed();

248

https://laravel.com/docs/12.x/eloquent
https://laravel.com/docs/12.x/eloquent-factories
https://laravel.com/docs/12.x/eloquent-factories
https://laravel.com/docs/12.x/eloquent-factories
https://laravel.com/docs/12.x/seeding


    // Run a specific seeder...

    $this->seed(OrderStatusSeeder::class);

    // Run an array of specific seeders...

    $this->seed([

        OrderStatusSeeder::class,

        TransactionStatusSeeder::class,

        // ...

    ]);

});

Or in a traditional test method:

<?php

namespace Tests\Feature;

use Database\Seeders\OrderStatusSeeder;

use Database\Seeders\TransactionStatusSeeder;

use Illuminate\Foundation\Testing\RefreshDatabase;

use Tests\TestCase;

class ExampleTest extends TestCase

{

    use RefreshDatabase;

    /**

     * Test creating a new order.

     */

    public function test_orders_can_be_created(): void

    {

        // Run the DatabaseSeeder...

        $this->seed();

        // Run a specific seeder...

        $this->seed(OrderStatusSeeder::class);

        // Run an array of specific seeders...

        $this->seed([

            OrderStatusSeeder::class,

            TransactionStatusSeeder::class,

            // ...

        ]);

    }

}

Alternatively, you may instruct Laravel to automatically seed the database before each test that uses the

RefreshDatabase  trait. You may accomplish this by defining a $seed  property on your base test class:

<?php

namespace Tests;

use Illuminate\Foundation\Testing\TestCase as BaseTestCase;

abstract class TestCase extends BaseTestCase

{

249



    /**

     * Indicates whether the default seeder should run before each test.

     *

     * @var bool

     */

    protected $seed = true;

}

When the $seed  property is true , the test will run the Database\Seeders\DatabaseSeeder  class

before each test that uses the RefreshDatabase  trait. However, you can specify a specific seeder that

should be executed by defining a $seeder  property on your test class:

use Database\Seeders\OrderStatusSeeder;

/**

 * Run a specific seeder before each test.

 *

 * @var string

 */

protected $seeder = OrderStatusSeeder::class;

Available Assertions

Laravel provides several database assertions for your Pest or PHPUnit feature tests. We'll discuss each of these

assertions below.

assertDatabaseCount

Assert that a table in the database contains the given number of records:

$this->assertDatabaseCount('users', 5);

assertDatabaseEmpty

Assert that a table in the database contains no records:

$this->assertDatabaseEmpty('users');

assertDatabaseHas

Assert that a table in the database contains records matching the given key / value query constraints:

$this->assertDatabaseHas('users', [

    'email' => 'example@example.com',

]);

assertDatabaseMissing

Assert that a table in the database does not contain records matching the given key / value query constraints:

$this->assertDatabaseMissing('users', [

    'email' => 'example@example.com',

]);

assertSoftDeleted

250

https://pestphp.com/
https://phpunit.de/


The assertSoftDeleted  method may be used to assert a given Eloquent model has been "soft deleted":

$this->assertSoftDeleted($user);

assertNotSoftDeleted

The assertNotSoftDeleted  method may be used to assert a given Eloquent model hasn't been "soft

deleted":

$this->assertNotSoftDeleted($user);

assertModelExists

Assert that a given model exists in the database:

use App\Models\User;

$user = User::factory()->create();

$this->assertModelExists($user);

assertModelMissing

Assert that a given model does not exist in the database:

use App\Models\User;

$user = User::factory()->create();

$user->delete();

$this->assertModelMissing($user);

expectsDatabaseQueryCount

The expectsDatabaseQueryCount  method may be invoked at the beginning of your test to specify the

total number of database queries that you expect to be run during the test. If the actual number of executed

queries does not exactly match this expectation, the test will fail:

$this->expectsDatabaseQueryCount(5);

// Test...

251



Mocking

Introduction

When testing Laravel applications, you may wish to "mock" certain aspects of your application so they are not

actually executed during a given test. For example, when testing a controller that dispatches an event, you may

wish to mock the event listeners so they are not actually executed during the test. This allows you to only test

the controller's HTTP response without worrying about the execution of the event listeners since the event

listeners can be tested in their own test case.

Laravel provides helpful methods for mocking events, jobs, and other facades out of the box. These helpers

primarily provide a convenience layer over Mockery so you do not have to manually make complicated

Mockery method calls.

Mocking Objects

When mocking an object that is going to be injected into your application via Laravel's service container, you

will need to bind your mocked instance into the container as an instance  binding. This will instruct the

container to use your mocked instance of the object instead of constructing the object itself:

use App\Service;

use Mockery;

use Mockery\MockInterface;

test('something can be mocked', function () {

    $this->instance(

        Service::class,

        Mockery::mock(Service::class, function (MockInterface $mock) {

            $mock->expects('process');

        })

    );

});

Alternatively, in a class:

use App\Service;

use Mockery;

use Mockery\MockInterface;

public function test_something_can_be_mocked(): void

{

    $this->instance(

        Service::class,

        Mockery::mock(Service::class, function (MockInterface $mock) {

            $mock->expects('process');

        })

    );

}

In order to make this more convenient, you may use the mock  method that is provided by Laravel's base test

case class. For example, the following example is equivalent to the example above:

252

https://laravel.com/docs/12.x/container


use App\Service;

use Mockery\MockInterface;

$mock = $this->mock(Service::class, function (MockInterface $mock) {

    $mock->expects('process');

});

You may use the partialMock  method when you only need to mock a few methods of an object. The

methods that are not mocked will be executed normally when called:

use App\Service;

use Mockery\MockInterface;

$mock = $this->partialMock(Service::class, function (MockInterface $mock) {

    $mock->expects('process');

});

Similarly, if you want to spy on an object, Laravel's base test case class offers a spy  method as a convenient

wrapper around the Mockery::spy  method. Spies are similar to mocks; however, spies record any

interaction between the spy and the code being tested, allowing you to make assertions after the code is

executed:

use App\Service;

$spy = $this->spy(Service::class);

// ...

$spy->shouldHaveReceived('process');

Mocking Facades

Unlike traditional static method calls, facades (including real-time facades) may be mocked. This provides a

great advantage over traditional static methods and grants you the same testability that you would have if you

were using dependency injection.

For example, consider the following controller action:

<?php

namespace App\Http\Controllers;

use Illuminate\Support\Facades\Cache;

class UserController extends Controller

{

    /**

     * Retrieve a list of all users of the application.

     */

    public function index(): array

    {

        $value = Cache::get('key');

        return [

            // ...

        ];

253

http://docs.mockery.io/en/latest/reference/spies.html
https://laravel.com/docs/12.x/facades
https://laravel.com/docs/12.x/facades#real-time-facades


    }

}

We can mock the call to the Cache  facade by using the expects  method, which will return an instance of

a Mockery mock. Since facades are actually resolved and managed by the Laravel service container, they have

much more testability than a typical static class. For example:

use Illuminate\Support\Facades\Cache;

test('get index', function () {

    Cache::expects('get')

        ->with('key')

        ->andReturn('value');

    $response = $this->get('/users');

    // ...

});

Alternatively, in a feature test:

namespace Tests\Feature;

use Illuminate\Support\Facades\Cache;

use Tests\TestCase;

class UserControllerTest extends TestCase

{

    public function test_get_index(): void

    {

        Cache::expects('get')

            ->with('key')

            ->andReturn('value');

        $response = $this->get('/users');

        // ...

    }

}

You should not mock the Request  facade. Instead, pass the input you desire into the HTTP testing methods

such as get  and post  when running your test. Likewise, instead of mocking the Config  facade, call

the Config::set  method in your tests.

Facade Spies

If you would like to spy on a facade, you may call the spy  method on the corresponding facade. Spies are

similar to mocks; however, spies record any interaction between the spy and the code being tested, allowing

you to make assertions after the code is executed:

use Illuminate\Support\Facades\Cache;

test('values are stored in cache', function () {

    Cache::spy();

    $response = $this->get('/');

254

https://github.com/padraic/mockery
https://laravel.com/docs/12.x/container
https://laravel.com/docs/12.x/http-tests
http://docs.mockery.io/en/latest/reference/spies.html


    $response->assertStatus(200);

    Cache::shouldHaveReceived('put')->with('name', 'Taylor', 10);

});

Similarly, in a class:

use Illuminate\Support\Facades\Cache;

public function test_values_are_stored_in_cache(): void

{

    Cache::spy();

    $response = $this->get('/');

    $response->assertStatus(200);

    Cache::shouldHaveReceived('put')->with('name', 'Taylor', 10);

}

Interacting With Time

When testing, you may occasionally need to modify the time returned by helpers such as now()  or

Illuminate\Support\Carbon::now() . Laravel's base feature test class includes helpers that allow you

to manipulate the current time:

test('time can be manipulated', function () {

    // Travel into the future...

    $this->travel(5)->milliseconds();

    $this->travel(5)->seconds();

    $this->travel(5)->minutes();

    $this->travel(5)->hours();

    $this->travel(5)->days();

    $this->travel(5)->weeks();

    $this->travel(5)->years();

    // Travel into the past...

    $this->travel(-5)->hours();

    // Travel to an explicit time...

    $this->travelTo(now()->subHours(6));

    // Return back to the present time...

    $this->travelBack();

});

Similarly, in a class:

public function test_time_can_be_manipulated(): void

{

    // Travel into the future...

    $this->travel(5)->milliseconds();

    $this->travel(5)->seconds();

    $this->travel(5)->minutes();

    $this->travel(5)->hours();

    $this->travel(5)->days();

255



    $this->travel(5)->weeks();

    $this->travel(5)->years();

    // Travel into the past...

    $this->travel(-5)->hours();

    // Travel to an explicit time...

    $this->travelTo(now()->subHours(6));

    // Return back to the present time...

    $this->travelBack();

}

You may also provide a closure to the various time travel methods. The closure will be invoked with time

frozen at the specified time. Once the closure has executed, time will resume as normal:

$this->travel(5)->days(function () {

    // Test something five days into the future...

});

$this->travelTo(now()->subDays(10), function () {

    // Test during a given moment...

});

The freezeTime  method may be used to freeze the current time. Similarly, the freezeSecond  method

will freeze the current time but at the start of the current second:

use Illuminate\Support\Carbon;

// Freeze time and resume normal time after executing closure...

$this->freezeTime(function (Carbon $time) {

    // ...

});

// Freeze time at the current second and resume normal time after executing closure...

$this->freezeSecond(function (Carbon $time) {

    // ...

});

All of these methods are primarily useful for testing time-sensitive application behavior, such as locking

inactive posts after a certain period:

use App\Models\Thread;

test('forum threads lock after one week of inactivity', function () {

    $thread = Thread::factory()->create();

    $this->travel(1)->week();

    expect($thread->isLockedByInactivity())->toBeTrue();

});

Similarly in a class:

use App\Models\Thread;

public function test_forum_threads_lock_after_one_week_of_inactivity()

{

256



    $thread = Thread::factory()->create();

    $this->travel(1)->week();

    $this->assertTrue($thread->isLockedByInactivity());

}

You may also provide a closure to the various time travel methods. The closure will be invoked with time

frozen at the specified time. Once the closure has executed, time will resume as normal:

$this->travel(5)->days(function () {

    // Test something five days into the future...

});

$this->travelTo(now()->subDays(10), function () {

    // Test during a specific moment...

});

All of the methods discussed above are largely useful for testing application behavior that depends on the

current time, such as news articles expiring or posts locking after inactivity.

257



Hello

258



Hello

259



Hello

260



Hello

261



Hello

262



Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

263

https://example.com/


Hello

264



Hello

265



Laravel Reverb

Introduction

Laravel Reverb brings blazing-fast and scalable real-time WebSocket communication directly to your Laravel

application, and provides seamless integration with Laravel s̓ existing suite of event broadcasting tools.

Installation

You may install Reverb using the install:broadcasting  Artisan command:

php artisan install:broadcasting

Configuration

Behind the scenes, the install:broadcasting  Artisan command will run the reverb:install

command, which will install Reverb with a sensible set of default configuration options. You can customize by

updating Reverb's environment variables or by editing the config/reverb.php  file.

Application Credentials

To establish a connection, Reverb requires application credentials exchanged between client and server. Set

these in your environment:

REVERB_APP_ID=my-app-id

REVERB_APP_KEY=my-app-key

REVERB_APP_SECRET=my-app-secret

Allowed Origins

Define from which origins client requests can originate in config/reverb.php  under apps :

'apps' => [

    [

        'app_id' => 'my-app-id',

        'allowed_origins' => ['laravel.com'],

        // ...

    ],

]

Use '*'  to allow all origins:

'apps' => [

    [

        'app_id' => 'my-app-id',

        'allowed_origins' => ['*'],

        // ...

    ],

]

Additional Applications

266

https://github.com/laravel/reverb
https://laravel.com/docs/12.x/broadcasting


Multiple applications can be served using a single Reverb installation by defining multiple entries:

'apps' => [

    [

        'app_id' => 'my-app-one',

        // ...

    ],

    [

        'app_id' => 'my-app-two',

        // ...

    ],

],

SSL

Secure WebSocket connections may be terminated at your web server (e.g., Nginx). For direct secure

connections to Reverb, set the REVERB_HOST  environment variable or pass the hostname when starting the

server:

php artisan reverb:start --host="0.0.0.0" --port=8080 --hostname="laravel.test"

For certificates, specify tls  options in config/reverb.php :

'options' => [

    'tls' => [

        'local_cert' => '/path/to/cert.pem',

    ],

],

Running the Server

Start Reverb with:

php artisan reverb:start

Default is 0.0.0.0:8080 . Customize host/port:

php artisan reverb:start --host=127.0.0.1 --port=9000

Use environment variables ( REVERB_SERVER_HOST , REVERB_SERVER_PORT ) instead of arguments.

Remember, REVERB_HOST  and REVERB_PORT  are for Laravel broadcast configuration.

Debugging

Enable debug logs with:

php artisan reverb:start --debug

Restarting

Since Reverb runs persistently, restart with:

php artisan reverb:restart

Ensure graceful shutdown; for process managers like Supervisor, it will auto-restart.

267



Monitoring

Reverb can be integrated with Laravel Pulse to track connections/messages:

use Laravel\Reverb\Pulse\Recorders\ReverbConnections;

use Laravel\Reverb\Pulse\Recorders\ReverbMessages;

'recorders' => [

    ReverbConnections::class => [

        'sample_rate' => 1,

    ],

    ReverbMessages::class => [

        'sample_rate' => 1,

    ],

]

Add Pulse dashboard cards:

<x-pulse>

    <livewire:reverb.connections cols="full" />

    <livewire:reverb.messages cols="full" />

    ...

</x-pulse>

Run the pulse:check  daemon to poll updates; required only on one server in scaled deployment.

Running in Production

Optimize your environment for WebSocket load:

For Forge: enable Reverb in the application panel.

Manage open files: ensure system limits are high enough using ulimit -n  and system config

( /etc/security/limits.conf ).

Open Files

Unix limits:

ulimit -n

Set higher in /etc/security/limits.conf :

forge   soft  nofile  10000

forge   hard  nofile  10000

Event Loop

Uses ReactPHP; defaults to stream_select , limited to 1024 connections. Use ext-uv  for higher

concurrency:

pecl install uv

Web Server

Use a reverse proxy (e.g., Nginx):

268

https://laravel.com/docs/12.x/pulse


server {

    ...

    location / {

        proxy_http_version 1.1;

        proxy_set_header Host $http_host;

        proxy_set_header Scheme $scheme;

        proxy_set_header SERVER_PORT $server_port;

        proxy_set_header REMOTE_ADDR $remote_addr;

        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

        proxy_set_header Upgrade $http_upgrade;

        proxy_set_header Connection "Upgrade";

        proxy_pass http://0.0.0.0:8080;

    }

    ...

}

Reverb listens at /app  for WebSocket and /apps  for API requests.

Ports

Unix systems restrict ports; check current range:

cat /proc/sys/net/ipv4/ip_local_port_range

Adjust in /etc/sysctl.conf  if needed.

Process Management

Use Supervisor:

[supervisord]

...

minfds=10000

Scaling

Enable horizontal scaling with Redis:

Set environment:

REVERB_SCALING_ENABLED=true

Ensure a central Redis server; Reverb servers communicate via Redis, distributing messages. Reverb servers

can run behind load balancers for high availability.

269



Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

270

https://example.com/
https://example.com/


Hello

271



Hello

272



Hello

273



Hello
<!-- The provided content is mostly a large HTML document; converting the entire conte

274



Hello

275



Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

276

https://example.com/
https://example.com/
https://example.com/
https://example.com/


Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

277

https://example.com/
https://example.com/


Laravel Envoy

Introduction

Laravel Envoy is a tool for executing common tasks you run on your remote servers. Using Blade style syntax,

you can easily set up tasks for deployment, Artisan commands, and more. Currently, Envoy only supports the

Mac and Linux operating systems. However, Windows support is achievable using WSL2.

Installation

First, install Envoy into your project using Composer:

composer require laravel/envoy --dev

Once installed, the Envoy binary will be available in your application's vendor/bin  directory:

php vendor/bin/envoy

Writing Tasks

Defining Tasks

Tasks are the basic building blocks of Envoy. They define shell commands that execute on your remote servers

when invoked. For example, you might define a task that runs php artisan queue:restart  on all

queue worker servers.

All Envoy tasks should be defined in an Envoy.blade.php  file at the root of your application. Here's an

example:

@servers(['web' => ['user@domain.com'], 'workers' => ['user@domain.com']])

@task('restart-queues', ['on' => 'workers'])

    cd /home/user/example.com

    php artisan queue:restart

@endtask

In this example, an array of @servers  is defined at the top, allowing you to reference these servers via the

on  option of your task declarations. The @servers  declaration should always be on a single line. Inside

your @task  declarations, place the shell commands to execute when the task is invoked.

Local Tasks

To run a script locally, specify the server's IP as 127.0.0.1 :

@servers(['localhost' => '127.0.0.1'])

Importing Envoy Tasks

You can import other Envoy files to include their stories and tasks:

@import('vendor/package/Envoy.blade.php')

278

https://github.com/laravel/envoy
https://docs.microsoft.com/en-us/windows/wsl/install-win10


Multiple Servers

Envoy allows you to run tasks across multiple servers. Add additional servers to your @servers  declaration

with unique names:

@servers(['web-1' => '192.168.1.1', 'web-2' => '192.168.1.2'])

@task('deploy', ['on' => ['web-1', 'web-2']])

    cd /home/user/example.com

    git pull origin {{ $branch }}

    php artisan migrate --force

@endtask

Parallel Execution

By default, tasks run serially. To execute in parallel, add the parallel  option:

@servers(['web-1' => '192.168.1.1', 'web-2' => '192.168.1.2'])

@task('deploy', ['on' => ['web-1', 'web-2'], 'parallel' => true])

    cd /home/user/example.com

    git pull origin {{ $branch }}

    php artisan migrate --force

@endtask

Setup

To execute PHP code before tasks, use the @setup  directive:

@setup

    $now = new DateTime;

@endsetup

To include other PHP files before tasks, use @include :

@include('vendor/autoload.php')

Variables

Pass arguments via command line:

php vendor/bin/envoy run deploy --branch=master

Access options and pass Blade variables:

@servers(['web' => ['user@domain.com']])

@task('deploy', ['on' => 'web'])

    cd /home/user/example.com

    @if ($branch)

        git pull origin {{ $branch }}

    @endif

    php artisan migrate --force

@endtask

279



Stories

Stories group tasks:

@servers(['web' => ['user@domain.com']])

@story('deploy')

    update-code

    install-dependencies

@endstory

@task('update-code')

    cd /home/user/example.com

    git pull origin master

@endtask

@task('install-dependencies')

    cd /home/user/example.com

    composer install

@endtask

Invoke the story like a task:

php vendor/bin/envoy run deploy

Hooks

Envoy supports hooks: @before , @after , @error , @success , and @finished . These execute

PHP code locally and in order.

Before Hooks

Execute before each task:

@before

    if ($task === 'deploy') {

        // do something

    }

@endbefore

After Hooks

Execute after each task:

@after

    if ($task === 'deploy') {

        // do something

    }

@endafter

Error Hooks

Execute on task failure:

280



@error

    if ($task === 'deploy') {

        // handle error

    }

@enderror

Success Hooks

If no errors occurred:

@success

    // success actions

@endsuccess

Finished Hooks

After all tasks (regardless of exit code):

@finished

    if ($exitCode > 0) {

        // handle errors

    }

@endfinished

Running Tasks

Execute a task or story:

php vendor/bin/envoy run deploy

Confirming Task Execution

Add confirm  to prompt before execution:

@task('deploy', ['on' => 'web', 'confirm' => true])

    cd /home/user/example.com

    git pull origin {{ $branch }}

    php artisan migrate

@endtask

Notifications

Slack

Send Slack notifications:

@finished

    @slack('webhook-url', '#channel')

@endfinished

Customize message:

@finished

    @slack('webhook-url', '#channel', 'Hello, Slack.')

281



@endfinished

Discord

Send Discord notifications:

@finished

    @discord('discord-webhook-url')

@endfinished

Telegram

Send Telegram notifications:

@finished

    @telegram('bot-id', 'chat-id')

@endfinished

Microsoft Teams

Send Teams notifications:

@finished

    @microsoftTeams('webhook-url')

@endfinished

282



Laravel Fortify

Introduction

Laravel Fortify is a frontend agnostic authentication backend implementation for Laravel. Fortify registers the

routes and controllers needed to implement all of Laravel's authentication features, including login,

registration, password reset, email verification, and more. After installing Fortify, you may run the

route:list  Artisan command to see the routes that Fortify has registered.

Since Fortify does not provide its own user interface, it is meant to be paired with your own user interface

which makes requests to the routes it registers.

We will discuss exactly how to make requests to these routes in the remainder of this documentation.

Remember, Fortify is a package that is meant to give you a head start implementing Laravel's authentication

features. You are not required to use it. You can always interact directly with Laravel's authentication services

by following the documentation on authentication, password reset, and email verification.

What is Fortify?

As mentioned above, Laravel Fortify is a frontend agnostic authentication backend for Laravel. It registers

routes and controllers for features like login, registration, password reset, email verification, etc.

You are not required to use Fortify to access Laravel's authentication features. Manual interaction is always

possible through the official docs.

If you're new to Laravel, consider exploring starter kits that include pre-built UIs with Tailwind CSS, which

work seamlessly with Fortify.

Laravel Fortify basically provides backend routes and controllers, and allows you to build your own frontend

UI.

When Should I Use Fortify?

If you are using Laravel's application starter kits, no need to install Fortify—these kits include full

authentication scaffolding.

If you are building an app without starter kits and need authentication features, you can:

Implement manually, or

Use Fortify for the backend implementation.

Your frontend will make requests to Fortify's routes as detailed here.

Laravel Fortify and Laravel Sanctum

Many developers confuse the difference:

Laravel Sanctum manages API tokens and authenticates users via session cookies or tokens. It does NOT

provide routes for registration, password resets, etc.

Fortify provides the backend routes for registration, password resets, and email verification.

283

https://github.com/laravel/fortify
https://laravel.com/docs/sanctum


Using both together is common, especially when building APIs or SPAs. Sanctum manages API tokens, Fortify

handles user management.

Installation

1. Install via Composer:

composer require laravel/fortify

2. Publish Fortify's resources:

php artisan fortify:install

This publishes actions, configuration, migrations, etc.

3. Migrate your database:

php artisan migrate

Fortify Features

Define which backend features are enabled in the config/fortify.php  file via the features  array.

Recommended features include:

'features' => [

    Features::registration(),

    Features::resetPasswords(),

    Features::emailVerification(),

],

Disabling Views

By default, Fortify defines routes that return views like login or registration screens.

To disable views (for example, if building an SPA), set:

'views' => false,

in your config/fortify.php .

Disabling Views and Password Reset

Even if views are disabled, you should still define a route named password.reset  because Laravel's

password reset email links rely on it.

Authentication Views

You need to instruct Fortify how to return your login view. Typically, this is set up in your

FortifyServiceProvider :

use Laravel\Fortify\Fortify;

// Inside your service provider's boot() method

284



public function boot(): void

{

    Fortify::loginView(function () {

        return view('auth.login');

    });

}

Your login form should POST to /login  with fields:

email  or username  (matching your config)

password

optional remember

Successful login redirects to the home  URI; errors are available in $errors .

Customizing User Authentication

You can override authentication logic via Fortify::authenticateUsing() , e.g.:

Fortify::authenticateUsing(function (Request $request) {

    $user = User::where('email', $request->email)->first();

    if ($user && Hash::check($request->password, $user->password)) {

        return $user;

    }

});

Authentication Guard

Configure which auth guard to use in config/fortify.php , typically 'web' . Ensure it implements

Illuminate\Contracts\Auth\StatefulGuard . For SPAs, use the web  guard with Sanctum.

Customizing the Authentication Pipeline

Fortify authenticates via a pipeline of classes. You can define a custom pipeline with

Fortify::authenticateThrough() :

Fortify::authenticateThrough(function (Request $request) {

    return array_filter([

        config('fortify.limiters.login') ? null : EnsureLoginIsNotThrottled::class,

        config('fortify.lowercase_usernames') ? CanonicalizeUsername::class : null,

        Features::enabled(Features::twoFactorAuthentication()) ? RedirectIfTwoFactorAu

        AttemptToAuthenticate::class,

        PrepareAuthenticatedSession::class,

    ]);

});

You can customize this pipeline as needed.

Authentication Throttling

285



Fortify throttles login attempts with EnsureLoginIsNotThrottled . You can customize rate limiting in

config/fortify.php  via fortify.limiters.login .

Custom Redirects after Login/Logout

Customize redirect behavior by binding LoginResponse  or LogoutResponse  into the service container

in your provider:

use Laravel\Fortify\Contracts\LogoutResponse;

public function register(): void

{

    $this->app->instance(LogoutResponse::class, new class implements LogoutResponse {

        public function toResponse($request)

        {

            return redirect('/');

        }

    });

}

On login, success redirect is configured by home ; logout redirect defaults to / .

Two-Factor Authentication

Enabled via Features::twoFactorAuthentication() . Users will input a code generated by an app like

Google Authenticator.

Setup

Ensure your User  model uses Laravel\Fortify\TwoFactorAuthenticatable :

use Laravel\Fortify\TwoFactorAuthenticatable;

class User extends Authenticatable

{

    use TwoFactorAuthenticatable;

}

Managing 2FA

Show QR code:

$request->user()->twoFactorQrCodeSvg();

Confirm 2FA setup: POST to /user/confirmed-two-factor-authentication  with code.

Disable: DELETE to /user/two-factor-authentication .

Enabling

POST to /user/two-factor-authentication  to enable 2FA. You will be prompted to scan QR code and

confirm via code.

Confirming

286



Provide a 2FA code to verify setup:

$request->user()->twoFactorConfirm($code);

Recovery codes can be accessed or regenerated:

(array) $request->user()->recoveryCodes();

Regenerate with POST to /user/two-factor-recovery-codes .

Protecting Routes

Use Laravel's built-in verified  middleware to enforce email verification:

Route::get('/dashboard', function () {

    // ...

})->middleware(['verified']);

Password Confirmation

Some actions require re-entering password. Use Fortify::confirmPasswordView() :

Fortify::confirmPasswordView(function () {

    return view('auth.confirm-password');

});

POST to /user/confirm-password  with password  field.

(The rest of the page contains navigation, footer, links to products, resources, partners, and social links).

Note: For further customization, implement your own views, actions, and route logic; the above are simple

examples to get started.

287



Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

288

https://example.com/
https://example.com/


Hello

289



Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

290

https://example.com/
https://example.com/


Laravel Mix

Introduction

Laravel Mix is a legacy package that is no longer actively maintained. Vite may be used as a modern

alternative.

Laravel Mix, a package developed by Laracasts creator Jeffrey Way, provides a fluent API for defining webpack

build steps for your Laravel application using several common CSS and JavaScript pre-processors.

In other words, Mix makes it a cinch to compile and minify your application's CSS and JavaScript files.

Through simple method chaining, you can fluently define your asset pipeline. For example:

mix.js('resources/js/app.js', 'public/js')

   .postCss('resources/css/app.css', 'public/css');

If you've ever been confused and overwhelmed about getting started with webpack and asset compilation, you

will love Laravel Mix. However, you are not required to use it while developing your application; you are free

to use any asset pipeline tool you wish, or even none at all.

Vite has replaced Laravel Mix in new Laravel installations. For Mix documentation, please visit the official

Laravel Mix website. If you would like to switch to Vite, please see our Vite migration guide.

291

https://laravel.com/docs/12.x/vite
https://github.com/laravel-mix/laravel-mix
https://laracasts.com/
https://webpack.js.org/
https://laravel-mix.com/
https://laravel-mix.com/
https://github.com/laravel/vite-plugin/blob/main/UPGRADE.md#migrating-from-laravel-mix-to-vite


Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

292

https://example.com/
https://example.com/
https://example.com/

