
Mastering Node.js: A
Comprehensive Guide

This book provides an in-depth exploration of Node.js, guiding readers from

foundational concepts to advanced practices. It covers everything from getting

started with Node.js, handling asynchronous operations, using TypeScript, to

ensuring security best practices. Ideal for developers looking to leverage Node.js

for building scalable and efficient applications.

1

Table of Contents

Getting Started with Node.js

Introduction to Node.js

How much JavaScript do you need to know to use Node.js?

Differences between Node.js and the Browser

The V8 JavaScript Engine

An introduction to the npm package manager

ECMAScript 2015 (ES6) and beyond

Node.js, the difference between development and production

Node.js with WebAssembly

Debugging Node.js

Profiling Node.js Applications

Fetching data with Node.js

WebSocket client with Node.js

Security Best Practices

TypeScript

Introduction to TypeScript

Running TypeScript Natively

Running TypeScript with a runner

Running TypeScript code using transpilation

Publishing a TypeScript package

Asynchronous Work

Asynchronous flow control

Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

Discover Promises in Node.js

Discover JavaScript Timers

The Node.js Event Loop

The Node.js Event Emitter

Understanding process.nextTick()

2

https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs

Node.js — Introduction to
Node.js
Learn About Download Blog Docs Contribute Certification

Change pageIntroduction to Node.js

Getting Started

Introduction to Node.js How much JavaScript do you need to know to use

Node.js? Differences between Node.js and the Browser The V8 JavaScript

Engine An introduction to the npm package manager ECMAScript 2015

(ES6) and beyond Node.js, the difference between development and

production Node.js with WebAssembly Debugging Node.js Profiling

Node.js Applications Fetching data with Node.js WebSocket client with

Node.js Security Best Practices

TypeScript

Introduction to TypeScript Running TypeScript Natively Running

TypeScript with a runner Running TypeScript code using transpilation

Publishing a TypeScript package

Asynchronous Work

Asynchronous flow control Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks Discover Promises

in Node.js Discover JavaScript Timers The Node.js Event Loop The Node.js

Event Emitter Understanding process.nextTick() Understanding

setImmediate() Don't Block the Event Loop

Manipulating Files

Node.js file stats Node.js File Paths Working with file descriptors in Node.js

Reading files with Node.js Writing files with Node.js Working with folders

in Node.js How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line How to read environment

variables from Node.js How to use the Node.js REPL Output to the

command line using Node.js Accept input from the command line in

Node.js

3

https://nodejs.org/docs/latest/api/
https://github.com/nodejs/node/blob/main/CONTRIBUTING.md
https://training.linuxfoundation.org/openjs/

Userland Migrations

Introduction to Userland Migrations

Modules

Publishing a package How to publish a Node-API package Anatomy of an

HTTP Transaction ABI Stability How to use streams Backpressuring in

Streams

Diagnostics

User Journey Memory Live Debugging Poor Performance Flame Graphs

Test Runner

Discovering Node.js's test runner Using Node.js's test runner Mocking in

tests Collecting code coverage in Node.js

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

4

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

CJSMJS

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(Server running at http://${hostname}:${port}/);

});

JavaScript

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs file and run node server.mjs in your terminal.

This code first includes the Node.js http module.

5

https://nodejs.org/api/http.html

Node.js has a fantastic standard library , including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing

two objects: a request (an http.IncomingMessage object) and a response

(an http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

JavaScript

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

JavaScript

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

JavaScript

If you haven't already done so, download Node.js.

NextHow much JavaScript do you need to know to use Node.js?

6

https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/en/download

Reading Time

3 min

Authors

F P MB R V T O O M +10

Contribute

Edit this page

Table of Contents

1. An Example Node.js Application

1. Navigate to Home

2. Getting Started

3. Introduction to Node.js

Trademark Policy Privacy Policy Version Support Code of Conduct Security

Policy

© OpenJS Foundation

7

https://github.com/flaviocopes
https://github.com/potch
https://github.com/mylesborins
https://github.com/RomainLanz
https://github.com/virkt25
https://github.com/Trott
https://github.com/onel0p3z
https://github.com/ollelauribostrom
https://github.com/MarkPieszak
https://github.com/nodejs/nodejs.org/blob/main/apps/site/pages/en/learn/getting-started/introduction-to-nodejs.md
https://trademark-policy.openjsf.org/
https://privacy-policy.openjsf.org/
https://github.com/openjs-foundation/cross-project-council/blob/main/CODE_OF_CONDUCT.md
https://github.com/nodejs/node/security/policy
https://github.com/nodejs/node/security/policy
https://openjsf.org/

Node.js — Introduction to
Node.js

Navigation

Learn, About, Download, Blog, Docs, Contribute, Certification

Change page

Introduction to Node.js

Getting Started

Introduction to Node.js

How much JavaScript do you need to know to use Node.js?

Differences between Node.js and the Browser

The V8 JavaScript Engine

An introduction to the npm package manager

ECMAScript 2015 (ES6) and beyond

Node.js, the difference between development and production

Node.js with WebAssembly

Debugging Node.js

Profiling Node.js Applications

Fetching data with Node.js

WebSocket client with Node.js

Security Best Practices

TypeScript

Introduction to TypeScript

Running TypeScript Natively

Running TypeScript with a runner

Running TypeScript code using transpilation

Publishing a TypeScript package

8

https://nodejs.org/docs/latest/api/
https://github.com/nodejs/node/blob/main/CONTRIBUTING.md
https://training.linuxfoundation.org/openjs/

Asynchronous Work

Asynchronous flow control

Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

Discover Promises in Node.js

Discover JavaScript Timers

The Node.js Event Loop

The Node.js Event Emitter

Understanding process.nextTick()

Understanding setImmediate()

Don't Block the Event Loop

Manipulating Files

Node.js file stats

Node.js File Paths

Working with file descriptors in Node.js

Reading files with Node.js

Writing files with Node.js

Working with folders in Node.js

How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line

How to read environment variables from Node.js

How to use the Node.js REPL

Output to the command line using Node.js

Accept input from the command line in Node.js

Userland Migrations

Introduction to Userland Migrations

Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

9

ABI Stability

How to use streams

Backpressuring in Streams

Diagnostics

User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests

Collecting code coverage in Node.js

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

10

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs file and run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

11

https://nodejs.org/api/http.html
https://nodejs.org/api/

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

We set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, see How much JavaScript do you need to know to use Node.js?

12

https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

13

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World\n');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is triggered, providing

two objects: a request (http.IncomingMessage) and a response

(http.ServerResponse).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

14

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?

15

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

16

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

17

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

18

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

19

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

20

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?

21

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

22

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use an .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including support for networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

23

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

24

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without the burden of managing thread concurrency, which could be a

significant source of bugs.

Node.js has a unique advantage because millions of frontend developers who

write JavaScript for the browser can now also write server-side code in addition

to client-side code without needing to learn a completely different language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of choosing which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common "Hello World" example of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

25

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (http.IncomingMessage) and a response

(http.ServerResponse).

Those two objects are essential to handle the HTTP call.

The first provides details about the request. In this simple example, it's not used,

but you could access request headers and data.

The second is used to return data to the caller, as shown:

res.statusCode = 200;

26

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

indicating a successful response with a 200 status, setting the content type, and

ending the response with the message.

If you haven't already, download Node.js.

Next

How much JavaScript do you need to know to use Node.js?

27

https://nodejs.org/en/download
https://en.wikipedia.org/wiki/Node.js

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

28

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use an .mjs version of the code, you should save it as server.mjs

and run node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

29

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

res.statusCode = 200;

We set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

And we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

30

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

31

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use an .mjs version of the code, you should save it as

server.mjs and run node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The request object provides the request details. In this simple example, this is

not used, but you could access the request headers and request data.

The response object is used to return data to the caller:

res.statusCode = 200;

and set the Content-Type header:

32

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

res.setHeader('Content-Type', 'text/plain');

Then, we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already, download Node.js.

Next, learn more about how much JavaScript you need to know to use Node.js.

33

https://nodejs.org/en/download
https://nodejs.org/en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs

Node.js — Introduction to
Node.js

Navigation

Learn

About

Download

Blog

Docs

Contribute

Certification

Change page

Introduction to Node.js

Getting Started

Introduction to Node.js

How much JavaScript do you need to know to use Node.js?

Differences between Node.js and the Browser

The V8 JavaScript Engine

An introduction to the npm package manager

ECMAScript 2015 (ES6) and beyond

Node.js, the difference between development and production

Node.js with WebAssembly

Debugging Node.js

Profiling Node.js Applications

Fetching data with Node.js

WebSocket client with Node.js

Security Best Practices

TypeScript

34

https://nodejs.org/en/learn
https://nodejs.org/en/about
https://nodejs.org/en/download
https://nodejs.org/en/blog
https://nodejs.org/docs/latest/api/
https://github.com/nodejs/node/blob/main/CONTRIBUTING.md
https://training.linuxfoundation.org/openjs/
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs
https://nodejs.org/en/learn/getting-started/differences-between-nodejs-and-the-browser
https://nodejs.org/en/learn/getting-started/the-v8-javascript-engine
https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-manager
https://nodejs.org/en/learn/getting-started/ecmascript-2015-es6-and-beyond
https://nodejs.org/en/learn/getting-started/nodejs-the-difference-between-development-and-production
https://nodejs.org/en/learn/getting-started/nodejs-with-webassembly
https://nodejs.org/en/learn/getting-started/debugging
https://nodejs.org/en/learn/getting-started/profiling
https://nodejs.org/en/learn/getting-started/fetch
https://nodejs.org/en/learn/getting-started/websocket
https://nodejs.org/en/learn/getting-started/security-best-practices

Introduction to TypeScript

Running TypeScript Natively

Running TypeScript with a runner

Running TypeScript code using transpilation

Publishing a TypeScript package

Asynchronous Work

Asynchronous flow control

Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

Discover Promises in Node.js

Discover JavaScript Timers

The Node.js Event Loop

The Node.js Event Emitter

Understanding process.nextTick()

Understanding setImmediate()

Don't Block the Event Loop

Manipulating Files

Node.js file stats

Node.js File Paths

Working with file descriptors in Node.js

Reading files with Node.js

Writing files with Node.js

Working with folders in Node.js

How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line

How to read environment variables from Node.js

How to use the Node.js REPL

Output to the command line using Node.js

Accept input from the command line in Node.js

Userland Migrations

Introduction to Userland Migrations

35

https://nodejs.org/en/learn/typescript/introduction
https://nodejs.org/en/learn/typescript/run-natively
https://nodejs.org/en/learn/typescript/run
https://nodejs.org/en/learn/typescript/transpile
https://nodejs.org/en/learn/typescript/publishing-a-ts-package
https://nodejs.org/en/learn/asynchronous-work/asynchronous-flow-control
https://nodejs.org/en/learn/asynchronous-work/overview-of-blocking-vs-non-blocking
https://nodejs.org/en/learn/asynchronous-work/javascript-asynchronous-programming-and-callbacks
https://nodejs.org/en/learn/asynchronous-work/discover-promises-in-nodejs
https://nodejs.org/en/learn/asynchronous-work/discover-javascript-timers
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick
https://nodejs.org/en/learn/asynchronous-work/the-nodejs-event-emitter
https://nodejs.org/en/learn/asynchronous-work/understanding-processnexttick
https://nodejs.org/en/learn/asynchronous-work/understanding-setimmediate
https://nodejs.org/en/learn/asynchronous-work/dont-block-the-event-loop
https://nodejs.org/en/learn/manipulating-files/nodejs-file-stats
https://nodejs.org/en/learn/manipulating-files/nodejs-file-paths
https://nodejs.org/en/learn/manipulating-files/working-with-file-descriptors-in-nodejs
https://nodejs.org/en/learn/manipulating-files/reading-files-with-nodejs
https://nodejs.org/en/learn/manipulating-files/writing-files-with-nodejs
https://nodejs.org/en/learn/manipulating-files/working-with-folders-in-nodejs
https://nodejs.org/en/learn/manipulating-files/working-with-different-filesystems
https://nodejs.org/en/learn/command-line/run-nodejs-scripts-from-the-command-line
https://nodejs.org/en/learn/command-line/how-to-read-environment-variables-from-nodejs
https://nodejs.org/en/learn/command-line/how-to-use-the-nodejs-repl
https://nodejs.org/en/learn/command-line/output-to-the-command-line-using-nodejs
https://nodejs.org/en/learn/command-line/accept-input-from-the-command-line-in-nodejs
https://nodejs.org/en/learn/migrations/introduction

Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

ABI Stability

How to use streams

Backpressuring in Streams

Diagnostics

User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests

Collecting code coverage in Node.js

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

36

https://nodejs.org/en/learn/modules/publishing-a-package
https://nodejs.org/en/learn/modules/publishing-node-api-modules
https://nodejs.org/en/learn/modules/anatomy-of-an-http-transaction
https://nodejs.org/en/learn/modules/abi-stability
https://nodejs.org/en/learn/modules/how-to-use-streams
https://nodejs.org/en/learn/modules/backpressuring-in-streams
https://nodejs.org/en/learn/diagnostics/user-journey
https://nodejs.org/en/learn/diagnostics/memory
https://nodejs.org/en/learn/diagnostics/live-debugging
https://nodejs.org/en/learn/diagnostics/poor-performance
https://nodejs.org/en/learn/diagnostics/flame-graphs
https://nodejs.org/en/learn/test-runner/introduction
https://nodejs.org/en/learn/test-runner/using-test-runner
https://nodejs.org/en/learn/test-runner/mocking
https://nodejs.org/en/learn/test-runner/collecting-code-coverage

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, you should save it as server.mjs

and run node server.mjs .

37

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

38

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/en/download

Node.js — Introduction to
Node.js

Back to top

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

39

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and data.

40

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

we set the statusCode property to 200 , indicating a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, learn more about How much JavaScript do you need to know to use

Node.js?

41

https://nodejs.org/en/download

Node.js — Introduction to
Node.js

Getting Started

Introduction to Node.js

How much JavaScript do you need to know to use Node.js?

Differences between Node.js and the Browser

The V8 JavaScript Engine

An introduction to the npm package manager

ECMAScript 2015 (ES6) and beyond

Node.js, the difference between development and production

Node.js with WebAssembly

Debugging Node.js

Profiling Node.js Applications

Fetching data with Node.js

WebSocket client with Node.js

Security Best Practices

TypeScript

Introduction to TypeScript

Running TypeScript Natively

Running TypeScript with a runner

Running TypeScript code using transpilation

Publishing a TypeScript package

Asynchronous Work

Asynchronous flow control

Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

Discover Promises in Node.js

Discover JavaScript Timers

The Node.js Event Loop

42

https://en/learn/getting-started/introduction-to-nodejs
https://en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs
https://en/learn/getting-started/differences-between-nodejs-and-the-browser
https://en/learn/getting-started/the-v8-javascript-engine
https://en/learn/getting-started/an-introduction-to-the-npm-package-manager
https://en/learn/getting-started/ecmascript-2015-es6-and-beyond
https://en/learn/getting-started/nodejs-the-difference-between-development-and-production
https://en/learn/getting-started/nodejs-with-webassembly
https://en/learn/getting-started/debugging
https://en/learn/getting-started/profiling
https://en/learn/getting-started/fetch
https://en/learn/getting-started/websocket
https://en/learn/getting-started/security-best-practices
https://en/learn/typescript/introduction
https://en/learn/typescript/run-natively
https://en/learn/typescript/run
https://en/learn/typescript/transpile
https://en/learn/typescript/publishing-a-ts-package
https://en/learn/asynchronous-work/asynchronous-flow-control
https://en/learn/asynchronous-work/overview-of-blocking-vs-non-blocking
https://en/learn/asynchronous-work/javascript-asynchronous-programming-and-callbacks
https://en/learn/asynchronous-work/discover-promises-in-nodejs
https://en/learn/asynchronous-work/discover-javascript-timers
https://en/learn/asynchronous-work/event-loop-timers-and-nexttick

The Node.js Event Emitter

Understanding process.nextTick()

Understanding setImmediate()

Don't Block the Event Loop

Manipulating Files

Node.js file stats

Node.js File Paths

Working with file descriptors in Node.js

Reading files with Node.js

Writing files with Node.js

Working with folders in Node.js

How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line

How to read environment variables from Node.js

How to use the Node.js REPL

Output to the command line using Node.js

Accept input from the command line in Node.js

Userland Migrations

Introduction to Userland Migrations

Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

ABI Stability

How to use streams

Backpressuring in Streams

Diagnostics

43

https://en/learn/asynchronous-work/the-nodejs-event-emitter
https://en/learn/asynchronous-work/understanding-processnexttick
https://en/learn/asynchronous-work/understanding-setimmediate
https://en/learn/asynchronous-work/dont-block-the-event-loop
https://en/learn/manipulating-files/nodejs-file-stats
https://en/learn/manipulating-files/nodejs-file-paths
https://en/learn/manipulating-files/working-with-file-descriptors-in-nodejs
https://en/learn/manipulating-files/reading-files-with-nodejs
https://en/learn/manipulating-files/writing-files-with-nodejs
https://en/learn/manipulating-files/working-with-folders-in-nodejs
https://en/learn/manipulating-files/working-with-different-filesystems
https://en/learn/command-line/run-nodejs-scripts-from-the-command-line
https://en/learn/command-line/how-to-read-environment-variables-from-nodejs
https://en/learn/command-line/how-to-use-the-nodejs-repl
https://en/learn/command-line/output-to-the-command-line-using-nodejs
https://en/learn/command-line/accept-input-from-the-command-line-in-nodejs
https://en/learn/migrations/introduction
https://en/learn/modules/publishing-a-package
https://en/learn/modules/publishing-node-api-modules
https://en/learn/modules/anatomy-of-an-http-transaction
https://en/learn/modules/abi-stability
https://en/learn/modules/how-to-use-streams
https://en/learn/modules/backpressuring-in-streams

User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests

Collecting code coverage in Node.js

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

44

https://en/learn/diagnostics/user-journey
https://en/learn/diagnostics/memory
https://en/learn/diagnostics/live-debugging
https://en/learn/diagnostics/poor-performance
https://en/learn/diagnostics/flame-graphs
https://en/learn/test-runner/introduction
https://en/learn/test-runner/using-test-runner
https://en/learn/test-runner/mocking
https://en/learn/test-runner/collecting-code-coverage

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs file and run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

45

https://nodejs.org/api/http.html
https://nodejs.org/api/

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

We set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

46

https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

47

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage) object and a response (an

http.ServerResponse) object.

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

48

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next

How much JavaScript do you need to know to use Node.js?

49

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

50

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the mjs version of the code, you should save it as a server.mjs file

and run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The request object provides the request details. In this simple example, this is

not used, but you could access the request headers and request data.

The response object is used to return data to the caller.

In this case, with:

51

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?

52

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

53

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use mjs version of the code, you should save it as a server.mjs file

and run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

54

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, learn How much JavaScript do you need to know to use Node.js?

55

https://nodejs.org/en/download

Node.js — Introduction to
Node.js

Navigation Home

Learn | About | Download | Blog |
Docs | Contribute | Certification

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

56

https://nodejs.org/docs/latest/api/
https://github.com/nodejs/node/blob/main/CONTRIBUTING.md
https://training.linuxfoundation.org/openjs/

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use the .mjs version of the code, save it as a server.mjs file and

run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

57

https://nodejs.org/api/http.html
https://nodejs.org/api/

Whenever a new request is received, the request event is called, providing two

objects: a request (http.IncomingMessage) and a response

(http.ServerResponse).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next Steps

How much JavaScript do you need to know to use Node.js?

Reading Time

3 min

Authors

58

https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/en/download

+10 others

Contribute

Edit this page

Table of Contents

1. An Example Node.js Application

Navigation

Navigate to Home | Getting Started | Introduction to Node.js

Footer

Trademark Policy

Privacy Policy

Version Support

Code of Conduct

Security Policy

© OpenJS Foundation

GitHub | Discord | LFX Social | Bluesky | Twitter | Slack Invite | LinkedIn

59

https://github.com/nodejs/nodejs.org/blob/main/apps/site/pages/en/learn/getting-started/introduction-to-nodejs.md
https://trademark-policy.openjsf.org/
https://privacy-policy.openjsf.org/
https://github.com/openjs-foundation/cross-project-council/blob/main/CODE_OF_CONDUCT.md
https://github.com/nodejs/node/security/policy
https://openjsf.org/
https://github.com/nodejs/node
https://nodejs.org/discord
https://social.lfx.dev/@nodejs
https://bsky.app/profile/nodejs.org
https://twitter.com/nodejs
https://slack-invite.openjsf.org/
https://www.linkedin.com/company/node-js

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment. It is

a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

60

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use an .mjs version of the code, you should save it as

server.mjs and run node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The request object provides the request details. In this simple example, this is

not used, but you could access the request headers and request data.

The response object is used to return data to the caller.

In this case, we set the statusCode property to 200 , to indicate a

successful response:

res.statusCode = 200;

61

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

And we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, learn How much JavaScript do you need to know to use Node.js?

62

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of

the browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

63

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use the mjs version of the code, you should save it as a

server.mjs file and run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

64

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?

65

https://nodejs.org/en/download
https://en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers who

write JavaScript for the browser can now write the server-side code in addition

to the client-side code without the need to learn a completely different language.

In Node.js, the new ECMAScript standards can be used without problems, as you

donʼt have to wait for all your users to update their browsers—you control the

ECMAScript version by changing the Node.js version, and you can enable

specific experimental features by running Node.js with flags.

An Example Node.js Application

The most common "Hello World" example of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

66

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use an .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When it s̓ ready,

the callback function is invoked, indicating the server is running.

Whenever a new request is received, the request event is triggered, providing

two objects: the request (http.IncomingMessage) and the response

(http.ServerResponse).

These objects are essential for handling the HTTP call.

The first contains request details; in this simple example, it is not used, but you

can access headers and request data.

The second is used to send data back to the client.

For example:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

67

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request

Set the status code to 200 , indicate the response is plain text via headers, and

close the response with end() , passing the content.

If you haven't already, download Node.js.

68

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

69

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs file and run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

70

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?

Reading Time: 3 min

Authors:

flaviocopes | potch | mylesborins | RomainLanz | virkt25 | Trott | onel0p3z |

OlleLauribostrom | M +10

Contribute: Edit this page

Table of Contents

1. An Example Node.js Application

Navigate to Home: Getting Started, Introduction to Node.js

71

https://nodejs.org/en/download
https://en.learn.javascript.knowledge/
https://github.com/flaviocopes
https://github.com/potch
https://github.com/mylesborins
https://github.com/RomainLanz
https://github.com/virkt25
https://github.com/Trott
https://github.com/onel0p3z
https://github.com/ollelauribostrom
https://github.com/MarkPieszak
https://github.com/nodejs/nodejs.org/blob/main/apps/site/pages/en/learn/getting-started/introduction-to-nodejs.md

Node.js — Introduction to
Node.js

Navigation

Learn

About

Download

Blog

Docs

Contribute

Certification

Change page

Introduction to Node.js

Getting Started

Introduction to Node.js

How much JavaScript do you need to know to use Node.js?

Differences between Node.js and the Browser

The V8 JavaScript Engine

An introduction to the npm package manager

ECMAScript 2015 (ES6) and beyond

Node.js, the difference between development and production

Node.js with WebAssembly

Debugging Node.js

Profiling Node.js Applications

Fetching data with Node.js

WebSocket client with Node.js

Security Best Practices

72

https://nodejs.org/en/learn
https://nodejs.org/en/about
https://nodejs.org/en/download
https://nodejs.org/en/blog
https://nodejs.org/docs/latest/api/
https://github.com/nodejs/node/blob/main/CONTRIBUTING.md
https://training.linuxfoundation.org/openjs/
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs
https://nodejs.org/en/learn/getting-started/differences-between-nodejs-and-the-browser
https://nodejs.org/en/learn/getting-started/the-v8-javascript-engine
https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-manager
https://nodejs.org/en/learn/getting-started/ecmascript-2015-es6-and-beyond
https://nodejs.org/en/learn/getting-started/nodejs-the-difference-between-development-and-production
https://nodejs.org/en/learn/getting-started/nodejs-with-webassembly
https://nodejs.org/en/learn/getting-started/debugging
https://nodejs.org/en/learn/getting-started/profiling
https://nodejs.org/en/learn/getting-started/fetch
https://nodejs.org/en/learn/getting-started/websocket
https://nodejs.org/en/learn/getting-started/security-best-practices

TypeScript

Introduction to TypeScript

Running TypeScript Natively

Running TypeScript with a runner

Running TypeScript code using transpilation

Publishing a TypeScript package

Asynchronous Work

Asynchronous flow control

Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

Discover Promises in Node.js

Discover JavaScript Timers

The Node.js Event Loop

The Node.js Event Emitter

Understanding process.nextTick()

Understanding setImmediate()

Don't Block the Event Loop

Manipulating Files

Node.js file stats

Node.js File Paths

Working with file descriptors in Node.js

Reading files with Node.js

Writing files with Node.js

Working with folders in Node.js

How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line

How to read environment variables from Node.js

How to use the Node.js REPL

Output to the command line using Node.js

Accept input from the command line in Node.js

Userland Migrations

73

https://nodejs.org/en/learn/typescript/introduction
https://nodejs.org/en/learn/typescript/run-natively
https://nodejs.org/en/learn/typescript/run
https://nodejs.org/en/learn/typescript/transpile
https://nodejs.org/en/learn/typescript/publishing-a-ts-package
https://nodejs.org/en/learn/asynchronous-work/asynchronous-flow-control
https://nodejs.org/en/learn/asynchronous-work/overview-of-blocking-vs-non-blocking
https://nodejs.org/en/learn/asynchronous-work/javascript-asynchronous-programming-and-callbacks
https://nodejs.org/en/learn/asynchronous-work/discover-promises-in-nodejs
https://nodejs.org/en/learn/asynchronous-work/discover-javascript-timers
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick
https://nodejs.org/en/learn/asynchronous-work/the-nodejs-event-emitter
https://nodejs.org/en/learn/asynchronous-work/understanding-processnexttick
https://nodejs.org/en/learn/asynchronous-work/understanding-setimmediate
https://nodejs.org/en/learn/asynchronous-work/dont-block-the-event-loop
https://nodejs.org/en/learn/manipulating-files/nodejs-file-stats
https://nodejs.org/en/learn/manipulating-files/nodejs-file-paths
https://nodejs.org/en/learn/manipulating-files/working-with-file-descriptors-in-nodejs
https://nodejs.org/en/learn/manipulating-files/reading-files-with-nodejs
https://nodejs.org/en/learn/manipulating-files/writing-files-with-nodejs
https://nodejs.org/en/learn/manipulating-files/working-with-folders-in-nodejs
https://nodejs.org/en/learn/manipulating-files/working-with-different-filesystems
https://nodejs.org/en/learn/command-line/run-nodejs-scripts-from-the-command-line
https://nodejs.org/en/learn/command-line/how-to-read-environment-variables-from-nodejs
https://nodejs.org/en/learn/command-line/how-to-use-the-nodejs-repl
https://nodejs.org/en/learn/command-line/output-to-the-command-line-using-nodejs
https://nodejs.org/en/learn/command-line/accept-input-from-the-command-line-in-nodejs

Introduction to Userland Migrations

Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

ABI Stability

How to use streams

Backpressuring in Streams

Diagnostics

User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests

Collecting code coverage in Node.js

Introduction

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and libraries are generally

written using non-blocking paradigms.

74

https://nodejs.org/en/learn/migrations/introduction
https://nodejs.org/en/learn/modules/publishing-a-package
https://nodejs.org/en/learn/modules/publishing-node-api-modules
https://nodejs.org/en/learn/modules/anatomy-of-an-http-transaction
https://nodejs.org/en/learn/modules/abi-stability
https://nodejs.org/en/learn/modules/how-to-use-streams
https://nodejs.org/en/learn/modules/backpressuring-in-streams
https://nodejs.org/en/learn/diagnostics/user-journey
https://nodejs.org/en/learn/diagnostics/memory
https://nodejs.org/en/learn/diagnostics/live-debugging
https://nodejs.org/en/learn/diagnostics/poor-performance
https://nodejs.org/en/learn/diagnostics/flame-graphs
https://nodejs.org/en/learn/test-runner/introduction
https://nodejs.org/en/learn/test-runner/using-test-runner
https://nodejs.org/en/learn/test-runner/mocking
https://nodejs.org/en/learn/test-runner/collecting-code-coverage

When Node.js performs an I/O operation like reading from the network,

database, or filesystem, it resumes operations upon response rather than

blocking.

This enables handling thousands of concurrent connections efficiently without

managing thread concurrency.

Many frontend developers who write JavaScript can now also write server-side

code in Node.js without learning a different language.

In addition, the latest ECMAScript standards can be used in Node.js, with

control over the version and experimental features via runtime flags.

An Example Node.js Application

The classic Hello World example is a simple web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run, save as server.js and execute:

node server.js

If using an .mjs file, save as server.mjs and run:

node server.mjs

This code requires the Node.js http module, creates a server that responds

with 'Hello World' to incoming requests, and listens on the specified port and

75

hostname.

The server callback handles incoming requests using request and response

objects; the response object is used to send data back to the client.

Ensure Node.js is installed from here.

76

https://nodejs.org/en/download

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

77

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World\n');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and execute node

server.js in your terminal.

If you use the .mjs version of the code, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is triggered, providing

two objects: a request (http.IncomingMessage) and a response

(http.ServerResponse).

Those two objects are essential for handling the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access request headers and data.

The second is used to return data to the caller.

In this case, with:

78

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request

res.statusCode = 200;

We set the statusCode property to 200 , indicating a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

And then close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already, download Node.js.

For more details, see the "How much JavaScript do you need to know to use

Node.js?" guide.

79

https://nodejs.org/en/download
https://nodejs.org/en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs/
https://nodejs.org/en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs/

Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

80

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal. If you use the mjs version of the code, you should save it as a

server.mjs file and run node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

81

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

82

https://nodejs.org/en/download

Node.js — Introduction to
Node.js
Link to Home

Navigation Menu

Learn

About

Download

Blog

Docs

Contribute

Certification

Change Page

Introduction to Node.js

Getting Started

Introduction to Node.js

How much JavaScript do you need to know to use Node.js?

Differences between Node.js and the Browser

The V8 JavaScript Engine

An introduction to the npm package manager

ECMAScript 2015 (ES6) and beyond

Node.js, the difference between development and production

Node.js with WebAssembly

Debugging Node.js

Profiling Node.js Applications

Fetching data with Node.js

WebSocket client with Node.js

Security Best Practices

83

https://nodejs.org/docs/latest/api/
https://github.com/nodejs/node/blob/main/CONTRIBUTING.md
https://training.linuxfoundation.org/openjs/

TypeScript

Introduction to TypeScript

Running TypeScript Natively

Running TypeScript with a runner

Running TypeScript code using transpilation

Publishing a TypeScript package

Asynchronous Work

Asynchronous flow control

Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

Discover Promises in Node.js

Discover JavaScript Timers

The Node.js Event Loop

The Node.js Event Emitter

Understanding process.nextTick()

Understanding setImmediate()

Don't Block the Event Loop

Manipulating Files

Node.js file stats

Node.js File Paths

Working with file descriptors in Node.js

Reading files with Node.js

Writing files with Node.js

Working with folders in Node.js

How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line

How to read environment variables from Node.js

How to use the Node.js REPL

Output to the command line using Node.js

Accept input from the command line in Node.js

Userland Migrations

84

Introduction to Userland Migrations

Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

ABI Stability

How to use streams

Backpressuring in Streams

Diagnostics

User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests

Collecting code coverage in Node.js

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of

the browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and libraries in Node.js are

generally written using non-blocking paradigms, making blocking behavior the

exception rather than the norm.

85

When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without managing thread concurrency, which could be a significant

source of bugs.

Node.js has a unique advantage because millions of frontend developers who

write JavaScript for the browser can now also write server-side code without

learning a completely different language.

In Node.js, the new ECMAScript standards can be used without issues because

you donʼt need to wait for all users to update their browsers — you control which

ECMAScript version to use by changing the Node.js version, and you can enable

specific experimental features by running Node.js with flags.

An Example Node.js Application

The most common "Hello World" example in Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as server.js and execute node server.js in

your terminal. If using the .mjs version, save it as server.mjs and run

node server.mjs .

This code first includes the Node.js http module.

86

https://nodejs.org/api/http.html

Node.js has a comprehensive standard library, including robust networking

support.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host. When ready, it calls the

callback, indicating the server is running.

When a request arrives, the request event triggers, providing request (an

http.IncomingMessage) and response (an http.ServerResponse)

objects.

The response object is used to send data back to the client. For example:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

Make sure you have Node.js installed by downloading it from here.

Next Steps

How much JavaScript do you need to know to use Node.js?

Reading Time: 3 min

Authors:

flaviocopes, potch, mylesborins, RomainLanz, virkt25, Trott, onel0p3z,

ollelauribostrom, M, and +10 more.

Contribute:

Edit this page

Navigation

Navigate to Home

Getting Started

Introduction to Node.js

87

https://nodejs.org/api/
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/en/download
https://github.com/flaviocopes
https://github.com/potch
https://github.com/mylesborins
https://github.com/RomainLanz
https://github.com/virkt25
https://github.com/Trott
https://github.com/onel0p3z
https://github.com/ollelauribostrom
https://github.com/MarkPieszak
https://github.com/nodejs/nodejs.org/blob/main/apps/site/pages/en/learn/getting-started/introduction-to-nodejs.md

Node.js — Introduction to
Node.js
Navigation & Menu

Change page

Introduction to Node.js

Getting Started

Introduction to Node.js

How much JavaScript do you need to know to use Node.js?

Differences between Node.js and the Browser

The V8 JavaScript Engine

An introduction to the npm package manager

ECMAScript 2015 (ES6) and beyond

Node.js, the difference between development and production

Node.js with WebAssembly

Debugging Node.js

Profiling Node.js Applications

Fetching data with Node.js

WebSocket client with Node.js

Security Best Practices

TypeScript

Introduction to TypeScript

Running TypeScript Natively

Running TypeScript with a runner

Running TypeScript code using transpilation

Publishing a TypeScript package

Asynchronous Work

Asynchronous flow control

Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

88

https://en/learn/getting-started/introduction-to-nodejs
https://en/learn/getting-started/how-much-javascript-do-you-need-to-know-to-use-nodejs
https://en/learn/getting-started/differences-between-nodejs-and-the-browser
https://en/learn/getting-started/the-v8-javascript-engine
https://en/learn/getting-started/an-introduction-to-the-npm-package-manager
https://en/learn/getting-started/ecmascript-2015-es6-and-beyond
https://en/learn/getting-started/nodejs-the-difference-between-development-and-production
https://en/learn/getting-started/nodejs-with-webassembly
https://en/learn/getting-started/debugging
https://en/learn/getting-started/profiling
https://en/learn/getting-started/fetch
https://en/learn/getting-started/websocket
https://en/learn/getting-started/security-best-practices
https://en/learn/typescript/introduction
https://en/learn/typescript/run-natively
https://en/learn/typescript/run
https://en/learn/typescript/transpile
https://en/learn/typescript/publishing-a-ts-package
https://en/learn/asynchronous-work/asynchronous-flow-control
https://en/learn/asynchronous-work/overview-of-blocking-vs-non-blocking
https://en/learn/asynchronous-work/javascript-asynchronous-programming-and-callbacks

Discover Promises in Node.js

Discover JavaScript Timers

The Node.js Event Loop

The Node.js Event Emitter

Understanding process.nextTick()

Understanding setImmediate()

Don't Block the Event Loop

Manipulating Files

Node.js file stats

Node.js File Paths

Working with file descriptors in Node.js

Reading files with Node.js

Writing files with Node.js

Working with folders in Node.js

How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line

How to read environment variables from Node.js

How to use the Node.js REPL

Output to the command line using Node.js

Accept input from the command line in Node.js

Userland Migrations

Introduction to Userland Migrations

Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

ABI Stability

How to use streams

Backpressuring in Streams

89

https://en/learn/asynchronous-work/discover-promises-in-nodejs
https://en/learn/asynchronous-work/discover-javascript-timers
https://en/learn/asynchronous-work/event-loop-timers-and-nexttick
https://en/learn/asynchronous-work/the-nodejs-event-emitter
https://en/learn/asynchronous-work/understanding-processnexttick
https://en/learn/asynchronous-work/understanding-setimmediate
https://en/learn/asynchronous-work/dont-block-the-event-loop
https://en/learn/manipulating-files/nodejs-file-stats
https://en/learn/manipulating-files/nodejs-file-paths
https://en/learn/manipulating-files/working-with-file-descriptors-in-nodejs
https://en/learn/manipulating-files/reading-files-with-nodejs
https://en/learn/manipulating-files/writing-files-with-nodejs
https://en/learn/manipulating-files/working-with-folders-in-nodejs
https://en/learn/manipulating-files/working-with-different-filesystems
https://en/learn/command-line/run-nodejs-scripts-from-the-command-line
https://en/learn/command-line/how-to-read-environment-variables-from-nodejs
https://en/learn/command-line/how-to-use-the-nodejs-repl
https://en/learn/command-line/output-to-the-command-line-using-nodejs
https://en/learn/command-line/accept-input-from-the-command-line-in-nodejs
https://en/learn/migrations/introduction
https://en/learn/modules/publishing-a-package
https://en/learn/modules/publishing-node-api-modules
https://en/learn/modules/anatomy-of-an-http-transaction
https://en/learn/modules/abi-stability
https://en/learn/modules/how-to-use-streams
https://en/learn/modules/backpressuring-in-streams

Diagnostics

User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests

Collecting code coverage in Node.js

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and libraries in Node.js are

generally written with non-blocking paradigms, making blocking behavior the

exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js resumes the operations when the response

comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without the burden of managing thread concurrency, which could be a

significant source of bugs.

Node.js has a unique advantage because millions of frontend developers writing

JavaScript for the browser can now also write server-side code without learning

90

https://en/learn/diagnostics/user-journey
https://en/learn/diagnostics/memory
https://en/learn/diagnostics/live-debugging
https://en/learn/diagnostics/poor-performance
https://en/learn/diagnostics/flame-graphs
https://en/learn/test-runner/introduction
https://en/learn/test-runner/using-test-runner
https://en/learn/test-runner/mocking
https://en/learn/test-runner/collecting-code-coverage

a different language.

In Node.js, the new ECMAScript standards can be used freely, as you don't have

to wait for all users to update their browsers — you control the ECMAScript

version via the Node.js version and can enable specific experimental features

with flags.

An Example Node.js Application

The most common "Hello World" example for Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this code, save it as server.js and execute node server.js in

the terminal. For the .mjs version, save as server.mjs and run node

server.mjs .

This code includes Node.js's http module, which provides networking

support.

createServer() creates an HTTP server that is set to listen on the specified

port and hostname. When the server is ready, the callback outputs a

confirmation message.

Each incoming request triggers the request event, providing a request object

and a response object. These are used to handle the HTTP call: inspecting

request details or sending a response.

91

In this example, the response status code is set to 200 (success), the Content-

Type header to plain text, and the response is closed with "Hello World".

Reading Time

3 min

Authors

flaviocopes

potch

mylesborins

RomainLanz

virkt25

Trott

onel0p3z

ollelauribostrom

MarkPieszak

+10 more

Contribute

Edit this page

Navigation

Navigate to Home

Getting Started

Introduction to Node.js

Footer

Trademark Policy

Privacy Policy

Version Support

92

https://github.com/flaviocopes
https://github.com/potch
https://github.com/mylesborins
https://github.com/RomainLanz
https://github.com/virkt25
https://github.com/Trott
https://github.com/onel0p3z
https://github.com/ollelauribostrom
https://github.com/MarkPieszak
https://github.com/nodejs/nodejs.org/blob/main/apps/site/pages/en/learn/getting-started/introduction-to-nodejs.md
https://en/learn/getting-started/introduction-to-nodejs
https://trademark-policy.openjsf.org/
https://privacy-policy.openjsf.org/

Code of Conduct

Security Policy

© OpenJS Foundation

Discord

Social

Bsky

Twitter

Slack Invite

LinkedIn

93

https://github.com/openjs-foundation/cross-project-council/blob/main/CODE_OF_CONDUCT.md
https://github.com/nodejs/node/security/policy
https://openjsf.org/
https://nodejs.org/discord
https://social.lfx.dev/@nodejs
https://bsky.app/profile/nodejs.org
https://twitter.com/nodejs
https://slack-invite.openjsf.org/
https://www.linkedin.com/company/node-js

Node.js — Introduction to
Node.js

Back to Home

Getting Started

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

94

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js file and run node server.js

in your terminal.

If you use an .mjs version of the code, save it as a server.mjs file and run

node server.mjs in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including support for networking.

The createServer() method of http creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

95

https://nodejs.org/api/http.html
https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

we set the statusCode property to 200 , to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next

How much JavaScript do you need to know to use Node.js?

Reading Time: 3 min

Authors: F, P, MB, R, V, T, O, O, M +10

Contribute: Edit this page

Table of Contents

1. An Example Node.js Application

Navigate to:

Home > Getting Started > Introduction to Node.js

96

https://nodejs.org/en/download
https://github.com/flaviocopes
https://github.com/potch
https://github.com/mylesborins
https://github.com/RomainLanz
https://github.com/virkt25
https://github.com/Trott
https://github.com/onel0p3z
https://github.com/ollelauribostrom
https://github.com/MarkPieszak
https://github.com/nodejs/nodejs.org/blob/main/apps/site/pages/en/learn/getting-started/introduction-to-nodejs.md

