
Mastering Node.js: A
Comprehensive Guide

This book provides an in-depth exploration of Node.js, guiding readers from

foundational concepts to advanced practices. It covers everything from getting

started with Node.js, handling asynchronous operations, using TypeScript, to

ensuring security best practices. Ideal for developers looking to leverage Node.js

for building scalable and efficient applications.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in
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addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

CJSMJS

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log( Server running at http://${hostname}:${port}/ );

});

JavaScript

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs  file and run node server.mjs  in your terminal.

This code first includes the Node.js http  module.
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Node.js has a fantastic standard library , including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request  event is called, providing

two objects: a request (an http.IncomingMessage  object) and a response

(an http.ServerResponse  object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

JavaScript

we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

JavaScript

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

JavaScript

If you haven't already done so, download Node.js.

NextHow much JavaScript do you need to know to use Node.js?
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Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.
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Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs  file and run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.
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The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

We set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, see How much JavaScript do you need to know to use Node.js?
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

13



const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World\n');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is triggered, providing

two objects: a request ( http.IncomingMessage ) and a response

( http.ServerResponse ).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:
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res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?

15
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?

21
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

22



const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use an .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including support for networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without the burden of managing thread concurrency, which could be a

significant source of bugs.

Node.js has a unique advantage because millions of frontend developers who

write JavaScript for the browser can now also write server-side code in addition

to client-side code without needing to learn a completely different language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of choosing which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common "Hello World" example of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';
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const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request ( http.IncomingMessage ) and a response

( http.ServerResponse ).

Those two objects are essential to handle the HTTP call.

The first provides details about the request. In this simple example, it's not used,

but you could access request headers and data.

The second is used to return data to the caller, as shown:

res.statusCode = 200;
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res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

indicating a successful response with a 200 status, setting the content type, and

ending the response with the message.

If you haven't already, download Node.js.

Next

How much JavaScript do you need to know to use Node.js?
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use an .mjs  version of the code, you should save it as server.mjs

and run node server.mjs .

This code first includes the Node.js http  module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage  object) and a response (an

http.ServerResponse  object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:
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res.statusCode = 200;

We set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

And we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use an .mjs  version of the code, you should save it as

server.mjs  and run node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The request object provides the request details. In this simple example, this is

not used, but you could access the request headers and request data.

The response object is used to return data to the caller:

res.statusCode = 200;

and set the Content-Type  header:
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res.setHeader('Content-Type', 'text/plain');

Then, we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already, download Node.js.

Next, learn more about how much JavaScript you need to know to use Node.js.
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Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

ABI Stability

How to use streams

Backpressuring in Streams

Diagnostics

User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests
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Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and
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wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, you should save it as server.mjs

and run node server.mjs .
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This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.
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Back to top

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application
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The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and data.
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The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

we set the statusCode  property to 200 , indicating a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, learn more about How much JavaScript do you need to know to use

Node.js?
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Overview of Blocking vs Non-Blocking

JavaScript Asynchronous Programming and Callbacks

Discover Promises in Node.js
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The Node.js Event Loop
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The Node.js Event Emitter

Understanding process.nextTick()

Understanding setImmediate()

Don't Block the Event Loop

Manipulating Files

Node.js file stats

Node.js File Paths

Working with file descriptors in Node.js

Reading files with Node.js

Writing files with Node.js

Working with folders in Node.js

How to work with Different Filesystems

Command Line

Run Node.js scripts from the command line

How to read environment variables from Node.js

How to use the Node.js REPL

Output to the command line using Node.js

Accept input from the command line in Node.js

Userland Migrations

Introduction to Userland Migrations

Modules

Publishing a package

How to publish a Node-API package

Anatomy of an HTTP Transaction

ABI Stability

How to use streams

Backpressuring in Streams

Diagnostics
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User Journey

Memory

Live Debugging

Poor Performance

Flame Graphs

Test Runner

Discovering Node.js's test runner

Using Node.js's test runner

Mocking in tests

Collecting code coverage in Node.js

Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.
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In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs  file and run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.
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Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;

We set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage) object and a response (an

http.ServerResponse) object.

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next

How much JavaScript do you need to know to use Node.js?
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the mjs version of the code, you should save it as a server.mjs  file

and run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The request object provides the request details. In this simple example, this is

not used, but you could access the request headers and request data.

The response object is used to return data to the caller.

In this case, with:
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res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use mjs version of the code, you should save it as a server.mjs  file

and run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, learn How much JavaScript do you need to know to use Node.js?
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Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.
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In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use the .mjs  version of the code, save it as a server.mjs  file and

run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.
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Whenever a new request is received, the request event is called, providing two

objects: a request ( http.IncomingMessage ) and a response

( http.ServerResponse ).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next Steps

How much JavaScript do you need to know to use Node.js?

Reading Time

3 min

Authors
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment. It is

a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use an .mjs  version of the code, you should save it as

server.mjs  and run node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The request object provides the request details. In this simple example, this is

not used, but you could access the request headers and request data.

The response object is used to return data to the caller.

In this case, we set the statusCode  property to 200 , to indicate a

successful response:

res.statusCode = 200;
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We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

And we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next, learn How much JavaScript do you need to know to use Node.js?
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8  JavaScript engine, the core of Google Chrome, outside of

the browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use the mjs version of the code, you should save it as a

server.mjs  file and run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers who

write JavaScript for the browser can now write the server-side code in addition

to the client-side code without the need to learn a completely different language.

In Node.js, the new ECMAScript standards can be used without problems, as you

donʼt have to wait for all your users to update their browsers—you control the

ECMAScript version by changing the Node.js version, and you can enable

specific experimental features by running Node.js with flags.

An Example Node.js Application

The most common "Hello World" example of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;
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const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use an .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When it s̓ ready,

the callback function is invoked, indicating the server is running.

Whenever a new request is received, the request event is triggered, providing

two objects: the request ( http.IncomingMessage ) and the response

( http.ServerResponse ).

These objects are essential for handling the HTTP call.

The first contains request details; in this simple example, it is not used, but you

can access headers and request data.

The second is used to send data back to the client.

For example:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');
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Set the status code to 200 , indicate the response is plain text via headers, and

close the response with end() , passing the content.

If you haven't already, download Node.js.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use mjs version of the code, you should save it as a

server.mjs  file and run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those 2 objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.

Next: How much JavaScript do you need to know to use Node.js?
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Introduction

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and libraries are generally

written using non-blocking paradigms.
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When Node.js performs an I/O operation like reading from the network,

database, or filesystem, it resumes operations upon response rather than

blocking.

This enables handling thousands of concurrent connections efficiently without

managing thread concurrency.

Many frontend developers who write JavaScript can now also write server-side

code in Node.js without learning a different language.

In addition, the latest ECMAScript standards can be used in Node.js, with

control over the version and experimental features via runtime flags.

An Example Node.js Application

The classic Hello World example is a simple web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run, save as server.js  and execute:

node server.js

If using an .mjs  file, save as server.mjs  and run:

node server.mjs

This code requires the Node.js http  module, creates a server that responds

with 'Hello World' to incoming requests, and listens on the specified port and
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hostname.

The server callback handles incoming requests using request and response

objects; the response object is used to send data back to the client.

Ensure Node.js is installed from here.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js, the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World\n');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and execute node

server.js  in your terminal.

If you use the .mjs  version of the code, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is triggered, providing

two objects: a request ( http.IncomingMessage ) and a response

( http.ServerResponse ).

Those two objects are essential for handling the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access request headers and data.

The second is used to return data to the caller.

In this case, with:
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res.statusCode = 200;

We set the statusCode  property to 200 , indicating a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

And then close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already, download Node.js.

For more details, see the "How much JavaScript do you need to know to use

Node.js?" guide.
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Introduction to Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers — you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,

and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');
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const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal. If you use the mjs version of the code, you should save it as a

server.mjs  file and run node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including first-class support for

networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host name. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.

The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case with:

res.statusCode = 200;
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we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.
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Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8  JavaScript engine, the core of Google Chrome, outside of

the browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and libraries in Node.js are

generally written using non-blocking paradigms, making blocking behavior the

exception rather than the norm.
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When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without managing thread concurrency, which could be a significant

source of bugs.

Node.js has a unique advantage because millions of frontend developers who

write JavaScript for the browser can now also write server-side code without

learning a completely different language.

In Node.js, the new ECMAScript standards can be used without issues because

you donʼt need to wait for all users to update their browsers — you control which

ECMAScript version to use by changing the Node.js version, and you can enable

specific experimental features by running Node.js with flags.

An Example Node.js Application

The most common "Hello World" example in Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as server.js  and execute node server.js  in

your terminal. If using the .mjs  version, save it as server.mjs  and run

node server.mjs .

This code first includes the Node.js http module.
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Node.js has a comprehensive standard library, including robust networking

support.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and host. When ready, it calls the

callback, indicating the server is running.

When a request arrives, the request  event triggers, providing request  (an

http.IncomingMessage ) and response  (an http.ServerResponse )

objects.

The response  object is used to send data back to the client. For example:

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

Make sure you have Node.js installed by downloading it from here.
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Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking, and libraries in Node.js are

generally written with non-blocking paradigms, making blocking behavior the

exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database, or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js resumes the operations when the response

comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without the burden of managing thread concurrency, which could be a

significant source of bugs.

Node.js has a unique advantage because millions of frontend developers writing

JavaScript for the browser can now also write server-side code without learning
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a different language.

In Node.js, the new ECMAScript standards can be used freely, as you don't have

to wait for all users to update their browsers — you control the ECMAScript

version via the Node.js version and can enable specific experimental features

with flags.

An Example Node.js Application

The most common "Hello World" example for Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this code, save it as server.js  and execute node server.js  in

the terminal. For the .mjs  version, save as server.mjs  and run node

server.mjs .

This code includes Node.js's http  module, which provides networking

support.

createServer()  creates an HTTP server that is set to listen on the specified

port and hostname. When the server is ready, the callback outputs a

confirmation message.

Each incoming request triggers the request  event, providing a request object

and a response object. These are used to handle the HTTP call: inspecting

request details or sending a response.
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In this example, the response status code is set to 200 (success), the Content-

Type header to plain text, and the response is closed with "Hello World".
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Introduction to Node.js

Node.js is an open-source and cross-platform JavaScript runtime environment.

It is a popular tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the

browser. This allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every

request. Node.js provides a set of asynchronous I/O primitives in its standard

library that prevent JavaScript code from blocking and generally, libraries in

Node.js are written using non-blocking paradigms, making blocking behavior

the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network,

accessing a database or the filesystem, instead of blocking the thread and

wasting CPU cycles waiting, Node.js will resume the operations when the

response comes back.

This allows Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency, which

could be a significant source of bugs.

Node.js has a unique advantage because millions of frontend developers that

write JavaScript for the browser are now able to write the server-side code in

addition to the client-side code without the need to learn a completely different

language.

In Node.js the new ECMAScript standards can be used without problems, as you

don't have to wait for all your users to update their browsers - you are in charge

of deciding which ECMAScript version to use by changing the Node.js version,
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and you can also enable specific experimental features by running Node.js with

flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

  res.statusCode = 200;

  res.setHeader('Content-Type', 'text/plain');

  res.end('Hello World');

});

server.listen(port, hostname, () => {

  console.log(`Server running at http://${hostname}:${port}/`);

});

To run this snippet, save it as a server.js  file and run node server.js

in your terminal.

If you use an .mjs  version of the code, save it as a server.mjs  file and run

node server.mjs  in your terminal.

This code first includes the Node.js http module.

Node.js has a fantastic standard library, including support for networking.

The createServer()  method of http  creates a new HTTP server and

returns it.

The server is set to listen on the specified port and hostname. When the server

is ready, the callback function is called, in this case informing us that the server

is running.

Whenever a new request is received, the request event is called, providing two

objects: a request (an http.IncomingMessage object) and a response (an

http.ServerResponse object).

Those two objects are essential to handle the HTTP call.
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The first provides the request details. In this simple example, this is not used,

but you could access the request headers and request data.

The second is used to return data to the caller.

In this case, with:

res.statusCode = 200;

we set the statusCode  property to 200 , to indicate a successful response.

We set the Content-Type  header:

res.setHeader('Content-Type', 'text/plain');

and we close the response, adding the content as an argument to end() :

res.end('Hello World\n');

If you haven't already done so, download Node.js.
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