
TanStack Router: Official Getting
Started Guide

An in-depth walkthrough to help you set up and utilize TanStack Router for modern web applications, based

on the latest official documentation.

1

Table of Contents

Introduction to TanStack Router

What is TanStack Router?

Why Choose TanStack Router?

Getting Started

Prerequisites

Installation

Basic Setup

Routing Fundamentals

Route Definitions

Navigation and Linking

Route Matching & Parameters

Data Loading & Mutations

Fetching Data

Mutating Data

Handling Load States

Advanced Routing Features

Route Guards & Authentication

Nested and Layout Routes

Transitions & Animations

SSR & Static Site Generation

Server-Side Rendering

Static Site Generation

Development & Debugging

Using Devtools

Performance Tips

Best Practices

Migration & Compatibility

Migrating from Other Routers

Compatibility & Framework Support

Resources & Community

Official Documentation

Community & Support

2

Contributing & Feedback

3

What is TanStack Router?

Overview of TanStack Router

TanStack Router is a modern, flexible, and powerful routing library designed to handle navigation in web

applications. Built with performance and simplicity in mind, it offers an intuitive API that makes defining and

managing routes straightforward across various frameworks.

Features and Benefits

Framework Agnostic: Works seamlessly with React, Vue, Svelte, and other JavaScript frameworks.

Declarative Routing: Easily specify routes using a clear, declarative syntax.

Nested Routing: Supports complex nested layouts and route hierarchies.

Data Loading: Built-in support for data fetching with loaders and mutations.

Type Safety: Strong TypeScript support to catch errors early.

Flexible Navigation: Programmatic and declarative navigation options.

SSR & Static Generation: Compatible with server-side rendering and static site generation.

Extensible & Customizable: Hooks and APIs to tailor routing behavior to your needs.

Use Cases

TanStack Router is ideal for:

Large-scale single-page applications (SPAs)

Static websites with complex navigation

Server-rendered applications that require hydration

Multi-framework projects needing consistent routing solutions

Apps requiring advanced features like route guards, transitions, and code splitting

In summary, TanStack Router aims to provide a robust routing solution that emphasizes developer experience,

performance, and adaptability, making it a compelling choice for modern web development projects.

4

Why Choose TanStack Router?

Comparison with Other Routing Libraries

TanStack Router stands out among other routing solutions due to its modern architecture, comprehensive

feature set, and flexibility. Unlike traditional routers, TanStack Router is built with TypeScript-first design,

ensuring strong type safety and autocomplete support, which minimizes runtime errors and improves

developer experience. Its declarative API aligns well with contemporary frameworks and allows for seamless

integration across different environments.

Advantages in Modern Web Development

Type Safety: Leverages TypeScript extensively, providing compile-time guarantees for route parameters,

search params, and more.

Performance: Optimized for minimal bundle size and fast navigation, supporting features like code

splitting and deferred loading.

Flexibility: Supports static, dynamic, nested, and layout routes with ease, accommodating complex

application architectures.

Universal Compatibility: Designed to work seamlessly with React, Vue, Svelte, and other frameworks,

fostering cross-framework development.

Rich Data Layer: Built-in support for data loading, mutations, and state management, reducing

boilerplate and streamlining data flow.

Advanced Features: Includes route guards, animations, transition states, and SSR capabilities, enabling

feature-rich applications.

Supported Frameworks

TanStack Router's versatility is evident in its broad support for various frameworks:

React: Fully integrated with React's component model, hooks, and context.

Vue.js: Compatible with Vue 3's Composition API and reactive system.

Svelte: Adapts well with Svelte's reactivity and component structure.

Others: Can be integrated with other JavaScript frameworks or used in vanilla JS projects with custom

adapters.

Choosing TanStack Router equips your projects with a modern, performant, and type-safe routing solution

that scales with your application's complexity and framework preferences.

5

Prerequisites
Before you start using TanStack Router, ensure your development environment meets the following

requirements:

Node.js and npm/Yarn

Node.js: Make sure you have Node.js installed on your machine. We recommend using the latest LTS

version. You can download it from Node.js official website.

Package Managers: Have either npm (comes bundled with Node.js) or Yarn installed. For Yarn, visit

Yarn's official site.

Framework Compatibility

TanStack Router supports various frontend frameworks. Currently, it is compatible with:

React (recommended version: v18.x.x or v19.x.x): Ensure React and ReactDOM are installed.

Vue.js, Svelte, and others: Support depends on the adapters and integration methods. Check the specific

documentation for your framework.

Basic Routing Concepts

A fundamental understanding of routing principles is helpful:

Routes: Mappings between URLs and components.

Navigation: How users move between routes.

Dynamic Parameters: URL parts that can change.

Query Parameters: Key-value pairs appended to URLs.

Nested Routes: Hierarchical route structures.

Familiarity with these concepts will facilitate a smoother setup and integration process.

Note: If you're new to routing in web applications, consider reviewing basic routing tutorials tailored to your

framework before proceeding with TanStack Router integration.

6

https://nodejs.org/
https://yarnpkg.com/

Installation
Getting TanStack Router up and running is straightforward. Follow these steps to integrate it into your project

and start building your routes.

Installing via npm/yarn

To install TanStack Router, run one of the following commands in your project directory:

npm install @tanstack/react-router

or

yarn add @tanstack/react-router

Make sure to also install any peer dependencies if prompted, such as React or other frameworks related

packages.

Setting up a new project

If you're starting a new project, you can quickly set up using your preferred scaffolding tool like Create React

App, Vite, or Next.js. Once your project environment is ready, install TanStack Router as shown above.

Installing peer dependencies

TanStack Router integrates with frameworks like React, Vue, or Svelte. Ensure that the relevant framework's

dependencies are installed:

For React projects:

npm install react react-dom

For Vue projects:

npm install vue

For Svelte projects:

npm install svelte

Always verify the latest peer dependencies required for your framework version from the official

documentation.

Summary

Use npm or yarn to install @tanstack/react-router .

Set up your project with necessary framework dependencies.

Follow your framework-specific setup guides to initialize the router and configure your routes.

Once installed, you can proceed to configure your router instance and define your routes to start managing

navigation in your application efficiently.

7

Basic Setup
Setting up TanStack Router in your project is straightforward. This chapter guides you through initializing a

router instance, creating your first routes, and understanding how to configure routes effectively.

Initializing a Router Instance

Begin by importing the necessary functions from TanStack Router and creating a router instance:

import { createRouter } from '@tanstack/react-router'

// Create a new router instance

const router = createRouter({

 // route configuration will go here

})

This createRouter function initializes your router with specified configurations.

Creating Your First Routes

Routes define the navigation paths in your application. Here's a simple example of setting up basic routes:

const routeTree = {

 id: 'root',

 children: [

 {

 id: 'home',

 path: '/',

 component: HomePage,

 },

 {

 id: 'about',

 path: '/about',

 component: AboutPage,

 },

],

}

Replace HomePage and AboutPage with your actual React component imports. To use these routes, pass

the route tree during router creation:

const router = createRouter({ routeTree })

Understanding Route Configuration

Routes can be configured with various properties:

path : URL pattern matching for the route.

component : React component rendered for the route.

children : Nested routes for hierarchical navigation.

loader : Function to load data before rendering.

action : Function to handle form submissions or mutations.

8

Example with additional configurations:

{

 id: 'profile',

 path: '/profile/:userId',

 component: UserProfile,

 loader: fetchUserData,

}

Tip: Always define a catch-all route for handling 404 errors or undefined paths.

Summary

Import createRouter from TanStack Router.

Define your route tree with paths and components.

Instantiate the router with your route configuration.

Use router-aware components to enable navigation.

By following these steps, you'll establish a solid foundation for route management in your application.

9

Route Definitions
Understanding route definitions is fundamental to building effective navigation structures with TanStack

Router. This section outlines how to declare static, dynamic, and nested routes to suit various application

needs.

Static Routes

Static routes map fixed URL paths directly to route configurations. These are best for pages with unchanging

paths, such as the homepage or about page.

import { createRouter, RouterProvider, Route } from '@tanstack/react-router';

const router = createRouter({

 routes: [

 {

 path: '/',

 element: () => <HomePage />,

 },

 {

 path: '/about',

 element: () => <AboutPage />,

 },

],

});

function App() {

 return (

 <RouterProvider router={router} />

);

}

Key Points:

Use a fixed path string.

Associate each route with an element or component.

Ideal for static pages.

Dynamic Routes with Params

Dynamic routes include parameters, allowing URLs to contain variable segments. These are useful for user

profiles, product pages, etc.

const productRoute = {

 path: '/product/:productId',

 element: () => <ProductPage />,

};

Usage:

The :parameterName syntax defines a route parameter.

Access parameters via hooks or props.

function ProductPage() {

 const params = useParams();

10

 return <div>Product ID: {params.productId}</div>;

}

Example URLs:

/product/123

/product/abc

Nested Routes

Nested routes enable hierarchical view structures, often used with layouts or shared components.

const dashboardRoute = {

 path: '/dashboard',

 element: () => <DashboardLayout />,

 children: [

 {

 path: 'stats',

 element: () => <StatsPage />,

 },

 {

 path: 'settings',

 element: () => <SettingsPage />,

 },

],

};

Features:

Define child routes inside a parent.

Use layout components to wrap nested views.

URLs become /dashboard/stats , /dashboard/settings .

Route Configuration Tips

Always use explicit path strings.

For nested routes, specify children .

Use route parameters for dynamic segments.

Combine static and dynamic segments as needed.

Mastering route definitions allows you to craft intuitive and scalable navigation structures tailored to your

application's architecture.

11

Navigation and Linking
Effective navigation and linking are essential for creating a seamless user experience in web applications

using TanStack Router. This chapter explores the core concepts and techniques for programmatic navigation,

declarative links, and styling active links.

Programmatic Navigation

Programmatic navigation allows you to change routes dynamically within your application based on user

actions or other logic. TanStack Router provides hooks and functions to facilitate this:

import { useNavigate } from '@tanstack/react-router';

function MyComponent() {

 const navigate = useNavigate();

 const goToProfile = () => {

 navigate({ to: '/profile' });

 };

 return (

 <button onClick={goToProfile}>Go to Profile</button>

);

}

useNavigate: Hook that returns a function to trigger route changes.

navigate: Function that accepts route parameters and performs navigation.

Declarative Links

Declarative links enable users to navigate through your app using <Link> components, which are similar to

traditional anchor tags but optimized for single-page applications.

import { Link } from '@tanstack/react-router';

function Navigation() {

 return (

 <nav>

 <Link to="/">Home</Link>

 <Link to="/about">About</Link>

 <Link to="/profile">Profile</Link>

 </nav>

);

}

Benefits of Declarative Links

Preloading routes on hover or focus.

Managing active styling automatically.

Handling client-side navigation seamlessly.

Active Link Styling

12

Highlighting the current active link enhances user orientation.

import { Link, useMatch } from '@tanstack/react-router';

function Navigation() {

 const isActive = (routePath) => useMatch({ to: routePath });

 return (

 <nav>

 <Link

 to="/"

 style={{ fontWeight: isActive('/') ? 'bold' : 'normal' }}

 >

 Home

 </Link>

 <Link

 to="/about"

 style={{ fontWeight: isActive('/about') ? 'bold' : 'normal' }}

 >

 About

 </Link>

 </nav>

);

}

Alternatively, use the active class:

<Link

 to="/"

 className={({ isActive }) => (isActive ? 'active-link' : undefined)}

>

 Home

</Link>

And define CSS:

.active-link {

 font-weight: bold;

 text-decoration: underline;

}

Summary

Navigation and linking in TanStack Router empower developers to create intuitive and accessible web

applications. Use programmatic navigation for dynamic route changes, declarative <Link> components for

user navigation, and active styling to indicate current routes. Combining these techniques results in a

coherent and user-friendly navigation experience.

13

Route Matching & Parameters
Understanding how TanStack Router matches routes and handles parameters is essential for creating dynamic

and flexible navigation.

Matching Strategies

TanStack Router offers several strategies for route matching:

Exact Matching: Routes match only when the URL path exactly corresponds to the route pattern.

Prefix Matching: Routes match if the URL begins with the route pattern, useful for nested or layout

routes.

Pattern Matching: Using route patterns with dynamic segments to match multiple URLs.

The selection of a matching strategy depends on your application's structure and routing requirements. The

router efficiently determines the active route based on the current URL using these strategies, enabling

predictable navigation behavior.

Using Route Params

Route parameters allow you to create routes that respond to variable segments in URLs. You define params in

your route configuration:

{

 path: "/user/:id",

 component: UserProfile

}

Accessing Params

Once matched, params are accessible within your components or loaders via hooks or context:

import { useParams } from '@tanstack/react-router'

function UserProfile() {

 const params = useParams()

 return <div>User ID: {params.id}</div>

}

Optional and Query Params

Optional Params: Defined with a question mark (?) to handle optional segments.

Query/Search Params: Accessed via URL's search parameters, often using built-in utilities or hooks.

// Example of retrieving query params

const searchParams = new URLSearchParams(location.search)

const filter = searchParams.get('filter')

Proper handling of params enables pattern matching for dynamic routes and supports complex URL

structures, enhancing user experience and SEO.

14

Fetching Data
In TanStack Router, data fetching is primarily managed through the use of loaders. Loaders allow you to fetch

data before a route is rendered, enabling seamless data-driven experiences within your application. This

chapter covers how to effectively implement data fetching and optimize its performance.

Loaders

Loaders are functions associated with routes that run during navigation, providing data necessary for

rendering the route's component. They can run on the server for SSR, or on the client during client-side

navigation.

Defining a Loader

To define a loader, attach a loader property to your route configuration:

import { createRoute } from '@tanstack/react-router'

const userRoute = createRoute({

 path: '/user/:id',

 element: <UserComponent />,

 loader: async ({ params }) => {

 const response = await fetch(`/api/users/${params.id}`)

 const user = await response.json()

 return { user }

 },

})

Accessing Loader Data

Within your route components, data provided by loaders can be accessed via hooks or props. For example,

using React hooks:

import { useLoaderData } from '@tanstack/react-router'

function UserComponent() {

 const data = useLoaderData()

 return <div>{data.user.name}</div>

}

Fetching on Route Load

Loaders are invoked when a route is initially loaded or when navigated to programmatically. This ensures your

components receive up-to-date data.

Preloading Data

TanStack Router supports preloading data for better user experience:

router.prefetch('/user/123')

This fetches data ahead of time, reducing latency during navigation.

15

Data Caching

To optimize performance, loaders can implement caching strategies:

In-Memory Caching: Store responses in memory to avoid redundant fetches.

Persistent Caching: Use IndexedDB or localStorage for longer-term caching.

Stale-While-Revalidate: Show cached data while fetching fresh data in the background.

Sample implementation of in-memory cache:

const cache = new Map()

const fetchWithCache = async (key, fetchFn) => {

 if (cache.has(key)) {

 return cache.get(key)

 }

 const data = await fetchFn()

 cache.set(key, data)

 return data

}

Use this within your loader to avoid unnecessary network requests.

Handling Load States

Managing loading and error states enhances user experience and robustness.

Loading Indicators

Display loading spinners or skeletons while data is being fetched:

import { useNavigation, useLoaderData } from '@tanstack/react-router'

function UserComponent() {

 const navigation = useNavigation()

 const data = useLoaderData()

 if (navigation.state.status === 'loading') {

 return <div>Loading...</div>

 }

 return <div>{data.user.name}</div>

}

Error Handling

Handle errors gracefully within loaders:

loader: async ({ params }) => {

 try {

 const response = await fetch(`/api/users/${params.id}`)

 if (!response.ok) throw new Error('Failed to fetch')

 const user = await response.json()

 return { user }

 } catch (error) {

16

 // Handle error, e.g., route to error page or show message

 }

}

Retry Logic

Implement retries with exponential backoff to improve resilience:

const fetchWithRetry = async (url, retries = 3) => {

 for (let i = 0; i < retries; i++) {

 try {

 const response = await fetch(url)

 if (response.ok) return response.json()

 } catch {}

 await new Promise((resolve) => setTimeout(resolve, Math.pow(2, i) * 1000))

 }

 throw new Error('Failed after retries')

}

Summary

Effective data fetching in TanStack Router involves:

Defining loaders for routes

Accessing loader data within components

Preloading and caching responses

Managing loading and error states gracefully

Implementing retries for robustness

Mastering these techniques ensures your applications are performant, resilient, and deliver a smooth user

experience.

17

Mutating Data
Mutating data in TanStack Router involves performing actions that change the application's state or backend

data based on user interactions or other triggers. This process is essential for handling form submissions,

updating records, toggling features, or any other operation that modifies data.

Core Concepts

Actions

Actions are functions responsible for executing data mutations. They can communicate with APIs, perform

database updates, or manipulate local state. Actions are typically triggered through user events like form

submissions or button clicks.

Form Submissions

Handling form data is a common use case for mutations. TanStack Router provides mechanisms to handle

form submissions seamlessly, allowing you to associate forms with specific actions to update data accordingly.

Optimistic Updates

Optimistic updates improve user experience by immediately reflecting changes in the UI before receiving

server confirmation. This approach requires careful handling of potential errors to maintain data consistency.

Implementing Mutations

Using Actions

To create and execute a mutation, define an action function and invoke it where needed:

import { createAction } from '@tanstack/react-router'

const updateUser = createAction(async (userData) => {

 const response = await fetch('/api/user', {

 method: 'POST',

 body: JSON.stringify(userData),

 headers: {

 'Content-Type': 'application/json',

 },

 })

 if (!response.ok) {

 throw new Error('Failed to update user')

 }

 return response.json()

})

// Trigger the action on form submit

function handleSubmit(event) {

 event.preventDefault()

 const formData = new FormData(event.target)

 const data = {

18

 name: formData.get('name'),

 email: formData.get('email'),

 }

 updateUser.submit(data)

}

Using Form.Submit

TanStack Router offers convenient components like Form.Submit for handling form submissions

declaratively:

import { Form } from '@tanstack/react-router'

function UserForm() {

 return (

 <Form action={updateUser}>

 <input name="name" placeholder="Name" />

 <input name="email" placeholder="Email" />

 <button type="submit">Save</button>

 </Form>

)

}

Handling Mutations and Feedback

You can listen to the success or error of actions to update the UI accordingly:

useEffect(() => {

 if (updateUser.status === 'success') {

 alert('User updated successfully!')

 } else if (updateUser.status === 'error') {

 alert(`Error: ${updateUser.error.message}`)

 }

}, [updateUser.status])

Best Practices

Validate Data Before Mutating: Ensure data integrity by validating inputs client-side and server-side.

Handle Loading and Error States: Provide user feedback during mutation processes.

Use Optimistic Updates Wisely: Implement with caution when real-time feedback enhances user

experience.

Secure Mutations: Authenticate and authorize mutation requests to prevent unauthorized data changes.

Summary

Mutating data is a vital part of dynamic applications. With TanStack Router, actions and form components

enable seamless data mutations, offering a declarative and intuitive way to handle state changes and backend

updates. Proper handling of load states, error management, and user feedback ensures a smooth user

experience.

19

Handling Load States
Effective management of load states is crucial for creating responsive and user-friendly applications with

TanStack Router. This section covers strategies to handle loading indicators, errors, and retries to ensure a

seamless user experience during data fetching and navigation.

Loading Indicators

Displaying a visual cue during data loading helps users understand that a process is underway. TanStack

Router provides hooks and options to implement loading indicators:

Use loader functions to fetch data asynchronously.

Show spinners, progress bars, or skeleton screens based on the router s̓ load state.

Example:

import { useRouteLoaderData } from '@tanstack/react-router'

function DataDisplay() {

 const data = useRouteLoaderData()

 if (!data) {

 return <div className="spinner">Loading...</div>

 }

 return <div>{/* render data */}</div>

}

Error Handling

Errors during data fetching or route loading can disrupt the user experience. To manage errors:

Use try-catch blocks within loader functions.

Implement error boundaries or fallback components.

TanStack Router allows defining error elements for routes:

const route = createRoute({

 path: '/data',

 loader: async () => {

 try {

 const response = await fetchData()

 return response

 } catch (error) {

 throw new Error('Failed to fetch data')

 }

 },

 errorElement: <ErrorComponent />,

})

The ErrorComponent will render automatically when an error occurs.

Retry Logic

Automatic retries can enhance robustness when transient errors happen. Strategies include:

20

Implementing retries within loader functions with exponential backoff.

Using third-party libraries or custom hooks to retry fetch requests.

Example:

function fetchDataWithRetry(retries = 3) {

 return async () => {

 for (let i = 0; i < retries; i++) {

 try {

 const response = await fetch('/api/data')

 if (!response.ok) throw new Error('Network response was not ok')

 return response.json()

 } catch (error) {

 if (i === retries - 1) throw error

 await new Promise(res => setTimeout(res, Math.pow(2, i) * 1000))

 }

 }

 }

}

Best Practices

Always provide visual feedback during loading.

Gracefully handle errors with user-friendly messages.

Allow users to retry failed fetches.

Avoid blocking navigation without indicating progress.

Optimize for quick load times to reduce the occurrence of load states.

By thoughtfully managing load states, you ensure that users have a smooth and trustworthy experience, even

when network conditions are unpredictable.

21

Route Guards & Authentication
Route guards are an essential feature in web applications to control access to certain routes based on

authentication status, permissions, or other conditions. They help ensure that users can only access content

they are authorized to see, enhancing the security and user experience of your application.

Protected Routes

Protected routes are routes that require users to be authenticated before access is granted. Implementing

protected routes typically involves checking the user's authentication state within route guards or middleware.

import { createRoute } from '@tanstack/react-router'

// Example: Guarded route that only authenticated users can access

const ProtectedRoute = createRoute({

 path: '/dashboard',

 loader: async ({ context }) => {

 if (!context.user.isAuthenticated) {

 throw new Error('Unauthorized')

 }

 // Fetch additional data if needed

 },

 // Optional: redirect unauthenticated users

 conditionalRender: ({ context }) => {

 return context.user.isAuthenticated ? <DashboardPage /> : <Redirect to="/login" />

 }

})

Redirects

Redirects are useful for guiding users to appropriate pages based on their authentication status or other

conditions. For example, redirecting unauthenticated users to a login page or redirecting authenticated users

away from login pages.

import { createRoute } from '@tanstack/react-router'

const authGuard = createRoute({

 path: '/protected',

 loader: ({ context }) => {

 if (!context.user.isAuthenticated) {

 return { redirect: '/login' }

 }

 }

})

Conditional Rendering

Conditional rendering within routes allows dynamically displaying components based on authentication or

other guard conditions. This provides flexibility in UI/UX, ensuring only authorized content is visible.

import { createRoute } from '@tanstack/react-router'

22

const ProfileRoute = createRoute({

 path: '/profile',

 conditionalRender: ({ context }) =>

 context.user.isAuthenticated ? <ProfilePage /> : <Redirect to="/login" />

})

Implementing Authentication Logic

In practice, route guards rely on an authentication context or state management. Often, middleware or loader

functions check user credentials, tokens, or permission levels.

// Example: Using context to check auth

const checkAuth = (context) => {

 if (!context.user || !context.user.isAuthenticated) {

 return { redirect: '/login' }

 }

 return null

}

Best Practices

Always verify authentication status both on the client-side (for user experience) and server-side (for

security).

Use clear redirect paths and messages for unauthorized access.

Combine route guards with role-based access control for more granular permissions.

Keep authentication logic centralized to simplify maintenance and updates.

Summary

Route guards and authentication mechanisms in TanStack Router enable you to secure routes effectively

through:

Protected routes that require authentication

Redirect logic for unauthorized access

Conditional rendering based on user state

Proper implementation of these features ensures a secure, seamless navigation experience for your users

while maintaining robust access control.

23

Nested and Layout Routes
Nested and layout routes are powerful features in TanStack Router that enable building complex and reusable

page structures. They allow you to compose multiple routes within each other, providing consistent layouts

and shared UI components across different parts of your application.

Creating Layout Routes

A layout route serves as a wrapper for nested routes, often containing common elements such as headers,

footers, navigation menus, or sidebars. To create a layout route, define a route with child routes, and include a

placeholder for nested content using <Outlet /> in your component.

// ExampleLayout.jsx

import { Outlet } from '@tanstack/react-router';

function ExampleLayout() {

 return (

 <div>

 <header>My Application Header</header>

 <main>

 <Outlet /> {/* Nested routes will render here */}

 </main>

 <footer>Footer content</footer>

 </div>

);

}

// Routes configuration

const routes = createRouteConfig({

 path: '/',

 component: ExampleLayout,

 children: [

 {

 path: 'dashboard',

 component: DashboardPage,

 },

 {

 path: 'settings',

 component: SettingsPage,

 },

],

});

Nested Routing Patterns

Nested routing allows you to define routes inside other routes, enabling shared layouts and consistent

navigation flows.

Deeply nested routes: Build multi-level route hierarchies for complex applications.

Shared layouts: Use layout routes to manage common UI elements across multiple nested routes.

Parameter sharing: Pass route parameters efficiently through nested routes.

24

Example Structure:

/app

 /dashboard

 /stats

 /reports

 /settings

 /profile

 /preferences

Example Route Configuration:

const routes = createRouteConfig({

 path: 'app',

 component: AppLayout,

 children: [

 {

 path: 'dashboard',

 component: DashboardLayout,

 children: [

 { path: 'stats', component: StatsPage },

 { path: 'reports', component: ReportsPage },

],

 },

 {

 path: 'settings',

 component: SettingsLayout,

 children: [

 { path: 'profile', component: ProfilePage },

 { path: 'preferences', component: PreferencesPage },

],

 },

],

});

Shared Layouts

Reusable layout components help maintain a consistent look and feel across your app. You can embed shared

UI elements such as navigation bars, side menus, and footers within layout routes, ensuring DRY (Don't Repeat

Yourself) principles.

Best Practices

Use layout routes to encapsulate UI elements common across multiple pages.

Keep layout components simple and focused on structure.

Use <Outlet /> to render nested routes dynamically.

Organize deeply nested routes thoughtfully to avoid overly complex hierarchies.

Summary

Nested and layout routes empower you to build modular, scalable, and maintainable applications with

TanStack Router. By leveraging layout routes and nested patterns, you can create intuitive and reusable UI

structures that enhance user experience and streamline development.

25

Transitions & Animations
Enhancing user experience through smooth transitions and engaging animations is a key aspect of modern

web development. TanStack Router provides several features and best practices for implementing page

transitions and animations to create seamless navigation flows.

Page Transitions

Page transitions help to visually indicate navigation changes, making the user interface feel more dynamic

and responsive. You can implement transitions by leveraging CSS animations, JavaScript-based animation

libraries, or built-in transition hooks provided by the routing library.

Using CSS Animations

Apply CSS classes during route changes to animate elements. For example:

/* Fade-in and fade-out effects */

.page-enter {

 opacity: 0;

 transform: translateY(-10px);

 transition: opacity 300ms, transform 300ms;

}

.page-enter-active {

 opacity: 1;

 transform: translateY(0);

}

.page-exit {

 opacity: 1;

 transform: translateY(0);

 transition: opacity 300ms, transform 300ms;

}

.page-exit-active {

 opacity: 0;

 transform: translateY(10px);

}

And toggle these classes based on route lifecycle hooks or route change states.

Using JavaScript Animations

For more complex animations, integrate with libraries like Framer Motion or GSAP. You can trigger

animations in route lifecycle hooks or in response to navigation events.

import { motion } from 'framer-motion';

function PageComponent() {

 return (

 <motion.div initial={{ opacity: 0 }} animate={{ opacity: 1 }} exit={{ opacity: 0 }

 {/* page content */}

 </motion.div>

26

);

}

Using CSS Animations

CSS animations are performant and straightforward for simple effects. Use keyframes for more intricate

sequences.

Using CSS Animations

@keyframes fadeIn {

 from { opacity: 0; }

 to { opacity: 1; }

}

.element {

 animation: fadeIn 0.5s forwards;

}

Transition Hooks in TanStack Router

TanStack Router supports transition hooks such as onEnter , onStay , and onLeave , allowing you to

trigger animations programmatically during navigation events.

import { createRouter, Route } from '@tanstack/router';

const router = createRouter({

 routeTree: [

 new Route({

 path: '/home',

 onEnter: () => {

 // start fade-in animation

 },

 onLeave: () => {

 // start fade-out animation

 },

 }),

],

});

Best Practices

Use lightweight CSS transitions for performance.

Coordinate animations with route lifecycle hooks for synchronized effects.

Maintain accessibility by ensuring animations are non-intrusive and can be reduced if needed.

Test animations on different devices and screen sizes to ensure smoothness.

Additional Resources

CSS-Tricks: Animation and Transitions

Framer Motion Documentation

GSAP Documentation

27

https://css-tricks.com/almanac/properties/a/animation/
https://www.framer.com/motion/
https://greensock.com/gsap/

Implementing well-crafted transitions and animations enhances the overall user experience, making your

web application feel more polished and professional. Experiment with different effects and techniques to find

what best suits your project's aesthetic.

28

Server-Side Rendering (SSR)
Server-Side Rendering with TanStack Router allows your application to render pages on the server before

sending them to the client. This approach enhances performance, improves SEO, and provides a better user

experience, especially for initial page loads.

SSR Setup Instructions

To enable SSR in your TanStack Router application, follow these general steps:

1. Configure your server environment:

Set up a Node.js server or a serverless environment capable of rendering your app.

2. Pre-render routes:

Use the router s̓ API to prefetch data and generate HTML for each route during build time or on-demand.

3. Hydration:

Once the server sends the rendered HTML, hydrate the React/Vue/Svelte app on the client to enable full

interactivity.

Hydration Considerations

Ensure the server-rendered content matches exactly with the client-side output.

Use useEffect or equivalent hooks to manage client-specific code that shouldn't run on the server.

Be cautious with API calls on the server; prefetch data during the rendering process to avoid flickering or

inconsistencies.

Data Prefetching

Prefetch data during server rendering to improve performance and reduce load times for pages:

Implement route loaders to fetch necessary data during SSR.

Pass fetched data as initial state to the client to avoid duplicate requests.

Best Practices for SSR

Keep the server rendering logic separate from client logic to prevent hydration mismatches.

Use cache strategies to minimize server load and improve response times.

Optimize your build process to support static export or incremental regeneration where applicable.

Example: Simplified SSR Flow

// Pseudocode for SSR setup

import { renderToString } from 'react-dom/server';

import { createMemoryHistory, RouterProvider } from '@tanstack/router';

const html = renderToString(

 <RouterProvider router={yourRouter} />

);

// Send `html` as response from your server

29

Conclusion

SSR with TanStack Router is flexible and powerful, supporting various backends and rendering strategies.

Proper setup ensures faster load times, better SEO, and a smooth user experience. For detailed

implementation tailored to your framework, consult the official documentation for React, Vue, Svelte, or your

preferred environment.

30

Static Site Generation
Static Site Generation (SSG) is a powerful feature of TanStack Router that enables you to pre-render your web

pages at build time. This approach results in faster load times, improved SEO, and better performance for your

web application.

Pre-rendering Routes

With SSG, you can specify which routes should be statically generated. This is especially useful for sites with

mostly static content, such as blogs, documentation, or marketing pages.

How it Works

During the build process, TanStack Router will generate static HTML files for the routes you configure for pre-

rendering. These files are then served directly by your hosting environment, minimizing server load and

eliminating the need for server-side rendering on each request.

Exporting Static Assets

To enable static site generation, you need to configure your build setup accordingly. Typically, this involves:

Defining which routes to pre-render.

Using the appropriate build commands or plugins that support static generation.

Ensuring that your project outputs static assets like HTML, CSS, and JS files compatible with static

hosting.

Optimization for Static Websites

To maximize the benefits of SSG, consider:

Minimizing dynamic data requirements on pre-rendered pages.

Leveraging incremental static regeneration or on-demand revalidation if your framework supports it.

Using fallback strategies for routes that require server-side data or are generated dynamically.

Example Configuration

Here's a simplified example of how you might configure your router for static site generation:

import { createRouter, defineRoute } from '@tanstack/router'

const routes = [

 defineRoute({

 path: "/",

 prefetch: true,

 }),

 defineRoute({

 path: "/about",

 prefetch: true,

 }),

]

31

const router = createRouter({ routes })

export default router

Consult your framework s̓ documentation for specific ways to integrate TanStack Router with static site

generation workflows.

Benefits of Static Site Generation

Speed: Serve pre-rendered pages instantly.

SEO: Better search engine indexing due to static HTML.

Reliability: Less dependency on backend servers.

Cost: Reduced hosting costs by serving static files.

Considerations

While SSG offers many advantages, it may not be suitable for sites with highly dynamic content that needs

real-time updates. For such cases, hybrid approaches combining static generation with client-side hydration

or server-side rendering can be employed.

Explore the capabilities of TanStack Router s̓ SSG features to optimize your specific project needs and deliver

fast, reliable, and SEO-friendly websites.

32

Using Devtools
TanStack Router Devtools are an essential tool for debugging and inspecting your application's routing state

and navigation flow. They provide real-time insights into your route tree, active routes, loaded data, and

transition states, making it easier to troubleshoot and optimize your routing setup.

Installing Devtools

To begin using the Devtools:

Install the plugin via npm or yarn:

npm install @tanstack/router-devtools

or

yarn add @tanstack/router-devtools

Import and initialize the Devtools in your application entry point:

import { RouterProvider } from '@tanstack/react-router'

import { Devtools } from '@tanstack/router-devtools'

function App() {

 return (

 <>

 <RouterProvider router={router} />

 <Devtools initialIsOpen={false} />

 </>

)

}

Inspecting Routes and State

Once integrated, open your browser's developer tools and locate the TanStack Router Devtools panel. Here,

you'll find:

Route Tree: Visual representation of the current nested routes and their hierarchy.

Active Routes: Highlighted routes that are currently active.

Route Data: Loaded data for each route, with options to inspect request details.

Navigation Events: Details on current and past navigation actions.

Transition States: Visual cues indicating ongoing route transitions.

Debugging Navigation Flow

The Devtools provide valuable information about:

The current URL and route parameters.

Which routes are being matched and why.

Data fetching status, including loading, success, or error states.

Transition animations and effects.

Errors or warnings in route configurations.

Use these features to:

Verify route setup and parameter passing.

33

Diagnose routing issues or unexpected behaviors.

Optimize data loading strategies.

Ensure smooth navigation experiences.

Best Practices

Keep the Devtools panel open during development for real-time feedback.

Use the inspection tools to simulate different route parameters or states.

Combine Devtools insights with console logs for comprehensive debugging.

Additional Resources

For more detailed documentation and advanced usage tips, refer to the official TanStack Router Devtools

documentation:

Official Docs

API References

By leveraging Devtools effectively, you can significantly enhance your debugging workflow and build more

reliable, performant routing in your web applications.

34

https://tanstack.com/router/latest/docs/devtools
https://tanstack.com/router/latest/docs/api

Performance Tips
Optimizing the performance of your TanStack Router implementation is essential for delivering fast, smooth

user experiences. This section covers practical strategies and best practices to enhance your application's

routing efficiency.

Code Splitting

Lazy Loading Routes: Implement route-based code splitting by dynamically importing route

components. This reduces the initial bundle size, leading to faster load times.

Split at Logical Boundaries: Divide your app into chunks aligned with feature sets or pages to optimize

loading and caching.

Prefetching Strategies

Preload Future Routes: Use prefetching to load route assets and data before the user navigates, reducing

perceived latency.

Targeted Prefetching: Prioritize prefetching for links likely to be followed, such as nearby or frequently

accessed routes.

Idle Time Prefetching: Leverage browser idle periods to prefetch resources without impacting critical

rendering paths.

Optimizing Load Times

Prioritize Critical Resources: Ensure essential route components and data are loaded first.

Use Cache Effectively: Utilize browser cache, service workers, or state management to avoid redundant

network requests.

Minimize Renders: Reduce unnecessary re-renders by memoizing components and leveraging React's

useMemo or useCallback .

Additional Best Practices

Limit the Number of Routes: Keep the routing tree as simple and flat as possible to minimize matching

overhead.

Avoid Heavy Computations in Loaders: Perform lightweight operations in loaders to prevent blocking

navigation.

Monitor Performance: Use browser DevTools, Lighthouse, or analytics to identify bottlenecks and

optimize accordingly.

By applying these performance tips thoughtfully, you can ensure that your application remains responsive and

efficient, providing a seamless experience for end users.

35

Best Practices
Implementing effective routing strategies is essential for building maintainable, performant, and user-friendly

web applications with TanStack Router. This page outlines some of the best practices to help you maximize the

potential of your routing setup.

Routing Architecture

Plan your route hierarchy carefully: Use nested routes and layout components to create a clear, logical

structure that reflects your application's UI and data flow.

Keep your route definitions concise: Avoid overly complex route configurations. Break down large

routes into smaller, reusable components.

State Management and Data Loading

Leverage loaders efficiently: Fetch data in loaders to keep components cleaner and to utilize caching

strategies effectively.

Use React Query for server state: Integrate with React Query to handle data caching, background

updates, and retries seamlessly.

Prefetch data proactively: Use preloading strategies to fetch data for routes that the user is likely to visit

next, improving perceived performance.

Navigation and User Experience

Use declarative links: Prefer <Link> components for navigation to ensure consistent behavior and

accessibility.

Highlight active links: Provide visual cues for the current route using activeProps for better

navigation clarity.

Handle load and error states gracefully: Show loading spinners, skeletons, or error messages to keep

users informed.

Security and Access Control

Implement route guards: Protect sensitive routes using guards that check authentication or permissions

before rendering.

Use redirects for unauthorized access: Redirect users to login pages or error pages as necessary to

prevent unauthorized access.

Accessibility

Ensure accessible navigation: Use semantic HTML and ARIA attributes where applicable.

Manage focus states: Properly handle focus during route transitions for a better screen reader

experience.

Performance Optimization

Implement code splitting: Split your routes into chunks to reduce initial load time.

Optimize route transitions: Use CSS animations or transitions for smooth visual navigation effects.

Minimize re-renders: Memoize components and avoid unnecessary state updates during navigation.

36

Maintenance and Scalability

Document your routing logic: Maintain clear documentation for complex routes and nested layouts.

Use meaningful route names and paths: Follow consistent naming conventions for better developer

experience.

Regularly review and refactor routes: Keep your route structure aligned with evolving application

requirements.

Community Resources

Collaborate with the community through GitHub discussions, forums, and chat channels.

Stay updated with the latest features and best practices by following official documentation and tutorials.

By adopting these best practices, you'll ensure that your application not only functions well but also provides a

seamless and accessible user experience while being easier to develop and maintain.

37

Migrating from Other Routers
Switching to TanStack Router from another routing library involves understanding the core differences and

adapting your existing routing setup. Whether you're migrating from React Router, Vue Router, or an older

custom solution, this guide will help you transition smoothly.

React Router Migration Guide

Key Differences

Declarative Configuration: TanStack Router emphasizes route configuration as objects, enabling more

flexible and modular setups.

Route Tree Structure: Routes are defined as a nested tree, allowing for more structured layouts.

Data Loading: Built-in support for loaders and actions facilitates data fetching and mutations directly

within route definitions.

Hooks and APIs: Uses React hooks like useMatches , useNavigate , and useParams , which may

differ from React Router hooks.

Migration Steps

1. Replace Route Definitions: Convert your <Route> components or route configuration objects to

TanStack Router's route tree format.

2. Update Navigation: Replace <Link> , <NavLink> , and programmatic navigation with TanStack's

Link component and navigate function.

3. Refactor Data Fetching: Migrate data fetching from useEffect or React Router's loader functions

to TanStack Router's loader API within route objects.

4. Adjust Route Guards: Implement route protection using route conditions or wrapper components

provided by TanStack Router.

5. Test Thoroughly: Ensure all routes, navigation, and data interactions work as intended after migration.

Example

React Router:

<Route path="/dashboard" element={<Dashboard />} />

TanStack Router:

const routeTree = createReactRouter({

 routes: [

 {

 path: "/dashboard",

 element: <Dashboard />,

 },

],

});

Vue Router Migration Guide

38

Convert Vue Router route definitions into TanStack's route configuration format.

Replace <router-link> and <router-view> with TanStack's <Link> and <Outlet> .

Adjust navigation logic to use TanStack's useNavigate hook.

Migrate route-specific data fetching and guards to TanStack's loader and condition APIs.

Legacy Apps and Other Routers

Migrating from legacy or less common routers involves:

Mapping route paths: Translate route paths and nested structures to TanStack's route tree syntax.

Handling parameters and queries: Adjust route parameters and query management within TanStack's

API.

Replacing navigation patterns: Update all navigation-related code to use TanStack's components and

hooks.

Refactoring data loading: Migrate any data fetching logic to TanStack's loader system.

General Migration Tips

Incremental Migration: Start by replacing route definitions, then gradually adopt TanStack Router's

features.

Leverage Compatibility Layers: Use adapters or wrappers if available to ease transition.

Read the Documentation: Familiarize yourself with the official migration guides and API references.

Community Support: Engage with community forums or GitHub discussions for complex scenarios.

By carefully planning and implementing these steps, you can transition to TanStack Router smoothly,

unlocking its powerful features for your application's routing needs.

39

Compatibility & Framework
Support
TanStack Router is designed to be highly versatile and compatible across multiple frameworks, enabling

developers to integrate modern routing solutions regardless of their chosen environment. Below is an

overview of the supported frameworks and considerations for integration.

React

Official Support: Fully supported with dedicated hooks, components, and utilities.

Features: Seamless integration with React Suspense, Context API, and hooks for data loading,

navigation, and route management.

Usage: Ideal for SPAs, SSR, and static site generation within React ecosystems.

Vue.js

Community Support: Available through community-maintained packages and adapters.

Features: Compatibility with Vue's reactivity system, Vue Router patterns, and composition API.

Usage: Suitable for Vue SPA and SSR applications.

Svelte

Community Support: Integration via community adapters.

Features: Utilizes Svelte's reactive features to provide smooth routing, transitions, and nested route

management.

Usage: Ideal for Svelte apps needing advanced routing capabilities.

Other Frameworks

SvelteKit, Astro, and more: Developers can create custom adapters for other frameworks following the

abstraction principles provided by TanStack Router.

Pure JavaScript: Can be integrated into vanilla JS projects, with manual DOM management for route

changes.

Adapter Architecture

TanStack Router uses an adapter pattern to support various frameworks. This approach encapsulates

framework-specific logic, providing a consistent API for route definitions, navigation, and data loading across

environments.

Considerations for Framework Integration

Hydration: When implementing SSR, ensure proper hydration strategies are in place to prevent

mismatch issues.

Reactivity: Leverage framework-specific reactive features to synchronize route state with UI.

Performance: Utilize code-splitting, prefetching, and caching strategies compatible with each

framework for optimized performance.

40

Future Support and Community Contributions

While official support is currently focused on React, ongoing development and community contributions aim

to expand support to additional frameworks continually. Developers are encouraged to participate in creating

adapters or extending support for their preferred environments.

Summary

Framework Support Status Notes

React Fully supported Official package, hooks, and components

Vue.js Community-supported Compatibility with Vue Router patterns

Svelte Community-supported Integration via community adapters

Others (SvelteKit, Astro, vanilla JS) Possible with custom adapters Flexibility through adapter pattern

For detailed instructions on integrating TanStack Router into your specific framework, refer to the respective

guides and community resources.

41

Official Documentation
Welcome to the official documentation for TanStack Router. This comprehensive guide provides you with

everything you need to get started, understand the core concepts, explore advanced features, and utilize the

full potential of the router in your projects.

Links to Documentation

Getting Started

API Reference

Guides and Tutorials

Core Concepts and Features

Routing System

Route Definitions: Learn how to define static, dynamic, and nested routes.

Navigation: Programmatic and declarative navigation techniques.

Route Matching: Strategies for matching URLs, handling params, and query parameters.

Data Management

Loaders: Fetch data on route load with built-in caching.

Actions: Handle form submissions and mutations.

Handling Load States: Manage loading indicators, errors, and retries.

Advanced Features

Route Guards & Auth: Implement protected routes, redirects, and conditional rendering.

Layouts and Nesting: Create shared layouts with nested routes.

Transitions & Animations: Add page transitions with CSS or JS animations.

SSR & Static Sites

Server-Side Rendering: Setup instructions, hydration, and data prefetching.

Static Site Generation: Pre-rendering, exporting assets, and optimizations.

Development & Debugging

Devtools: Inspect routes, state, and navigation flow.

Performance: Utilize code-splitting, prefetching, and load-time optimizations.

Best Practices: Architect routing with accessibility, scalability, and maintainability.

Migration & Compatibility

Guides for migrating from React Router, Vue Router, and legacy apps.

Compatibility support for React, Vue.js, Svelte, and other frameworks.

42

https://tanstack.com/router/latest/docs
https://tanstack.com/router/latest/api
https://tanstack.com/router/latest/guides

Using the Documentation

This documentation is designed to be your one-stop resource for all things related to TanStack Router. It

includes:

Step-by-step setup guides

API references with detailed descriptions

Real-world examples and best practices

Troubleshooting tips

Community resources and support channels

Community and Support

Join the conversation or get help through:

GitHub Discussions

Stack Overflow

Discord/Slack Channels

Contributing and Feedback

Your feedback helps improve TanStack Router. To contribute:

Review the Contributing Guidelines

Report issues on GitHub Issues

Request features via Discussions or GitHub

Frequently Asked Questions (FAQs)

Visit the FAQ section for answers to common questions, troubleshooting tips, and recommendations.

Final Notes

Keep the official documentation bookmarked for quick reference, and stay tuned for updates, new features,

and tutorials. Happy routing!

43

https://github.com/TanStack/router/discussions
https://stackoverflow.com/questions/tagged/tanstack-router
https://discord.gg/tanstack
https://github.com/TanStack/router/blob/main/CONTRIBUTING.md
https://github.com/TanStack/router/issues
https://tanstack.com/router/latest/docs/faq

Community & Support

GitHub Discussions

Engage with the community through GitHub Discussions. Here, you can ask questions, share ideas, and

collaborate on improving TanStack Router. It s̓ a great place to find official answers and participate in ongoing

conversations with both maintainers and fellow users.

Stack Overflow

For quick troubleshooting and specific implementation questions, Stack Overflow is an excellent resource. Use

the tag tanstack-router to find related questions or to ask your own. Clear, well-structured questions

help you get the most effective answers from the community.

Discord and Slack Channels

Join our vibrant community on Discord or Slack. These channels offer real-time support, discussions, and live

collaboration opportunities. Theyʼre ideal for interactive help, learning tips & tricks, and connecting with

developers using TanStack Router across different frameworks.

Community Contribution

We welcome contributions from the community! Whether you want to submit a bug fix, improve

documentation, or add new features, your input helps make TanStack Router better for everyone. Check our

contributing guidelines on the official repository for details on how to get involved.

Reporting Issues

Encounter a bug or have a feature request? Use the GitHub Issues page to report problems or suggest

enhancements. Provide detailed descriptions, reproduction steps, and relevant code snippets to help us

understand and address your concerns efficiently.

Stay Updated

Follow our official channels for the latest updates, announcements, and resources. Subscribing to newsletters

or following social media accounts will ensure you stay in the loop with all things TanStack Router.

Get Support

If you need personalized support or have questions not covered in the documentation or community

channels, consider reaching out via our support email or through official contact forms available on the

website. Weʼre here to help you succeed!

44

Contributing & Feedback
Thank you for your interest in contributing to the TanStack Router project! Your feedback, bug reports,

suggestions, and code contributions are invaluable to help improve the library and the overall community.

How to Contribute

Reporting Issues: If you encounter bugs or unexpected behaviors, please open an issue on the GitHub

repository. Please provide detailed steps to reproduce the problem, your environment details, and any

relevant code snippets.

Feature Requests: Have an idea for a new feature or improvement? Submit a feature request through the

GitHub issues page, describing your proposal and its benefits.

Submitting Pull Requests: We welcome pull requests for bug fixes, new features, or improvements.

Please ensure your code adheres to the project's style and passes all tests. Read the contribution

guidelines in the repository for detailed instructions.

Guidelines

Code Quality: Write clear, maintainable, and well-documented code.

Test Your Changes: Ensure your modifications are tested thoroughly.

Community Respect: Be respectful and constructive in your comments and interactions.

Stay Updated: Keep your fork up-to-date with the main repository to facilitate smooth integrations.

Support and Communication

Join discussions on our GitHub Discussions or Slack/Discord channels to collaborate with other

developers and ask questions.

Follow updates on the Official Documentation and community channels.

Feedback

Your feedback helps shape the future of TanStack Router. Please share your thoughts, report issues, or suggest

improvements via the designated channels. We appreciate your contributions and look forward to building a

robust, flexible routing library together!

45

https://github.com/tanstack/router/issues
https://github.com/tanstack/router/issues
https://github.com/tanstack/router/discussions

