
Mastering TanStack Start: A
Complete Guide to Full-Stack React

Development

This book provides an in-depth guide through the TanStack Start documentation, offering insights and

practical examples for mastering full-stack React development with TanStack Router and Start. It's a valuable

resource for developers looking to leverage the full potential of TanStack's powerful type-safe APIs, SSR, and

streaming capabilities.

1

Table of Contents

Getting Started with TanStack Start

Overview

Getting Started

Quick Start

Build from Scratch

Learn the Basics

Core Features and Functionality

Server Functions

Static Server Functions

Middleware

Server Routes

SPA Mode

Hosting and Integration

Hosting

Authentication

Databases

Observability

Static Prerendering

Path Aliases

Tailwind CSS Integration

Migrate from Next.js

Examples and Practical Use Cases

Basic Setup

Basic + React Query

Basic + Clerk Auth

Basic + DIY Auth

Basic + Supabase Auth

Trellaux + Convex

2

https://tanstack.com/start/latest/docs/framework/react/overview
https://tanstack.com/start/latest/docs/framework/react/getting-started
https://tanstack.com/start/latest/docs/framework/react/quick-start
https://tanstack.com/start/latest/docs/framework/react/build-from-scratch
https://tanstack.com/start/latest/docs/framework/react/learn-the-basics
https://tanstack.com/start/latest/docs/framework/react/server-functions
https://tanstack.com/start/latest/docs/framework/react/static-server-functions
https://tanstack.com/start/latest/docs/framework/react/middleware
https://tanstack.com/start/latest/docs/framework/react/server-routes
https://tanstack.com/start/latest/docs/framework/react/spa-mode
https://tanstack.com/start/latest/docs/framework/react/hosting
https://tanstack.com/start/latest/docs/framework/react/authentication
https://tanstack.com/start/latest/docs/framework/react/databases
https://tanstack.com/start/latest/docs/framework/react/observability
https://tanstack.com/start/latest/docs/framework/react/static-prerendering
https://tanstack.com/start/latest/docs/framework/react/path-aliases
https://tanstack.com/start/latest/docs/framework/react/tailwind-css-integration
https://tanstack.com/start/latest/docs/framework/react/migrate-from-nextjs
https://tanstack.com/start/latest/docs/framework/react/examples/basic
https://tanstack.com/start/latest/docs/framework/react/examples/basic-react-query
https://tanstack.com/start/latest/docs/framework/react/examples/basic-clerk-auth
https://tanstack.com/start/latest/docs/framework/react/examples/basic-diy-auth
https://tanstack.com/start/latest/docs/framework/react/examples/basic-supabase-auth
https://tanstack.com/start/latest/docs/framework/react/examples/trellaux-convex

TanStack Start Overview | TanStack
Start React Docs

Contents

Router or Start?

How does it work?

When should I use it?

When might I not want to use it?

How is TanStack Start funded?

Ready to get started?

TanStack Start Overview

TanStack Start is a full-stack React framework powered by TanStack Router. It provides full-document SSR,

streaming, server functions, bundling, and more. Thanks to Vite, it's ready to develop and deploy to any

hosting provider or runtime you want!

Router or Start?

TanStack Router is a powerful, type-safe, and full-featured routing system for React applications. It is designed

to handle the beefiest of full-stack routing requirements with ease. TanStack Start builds on top of Router's

type system to provide type-safe full-stack APIs that keep you in the fast lane.

What you get with TanStack Router:

100% inferred TypeScript support

Typesafe navigation

Nested Routing and pathless layout routes

Built-in Route Loaders w/ SWR Caching

Designed for client-side data caches (TanStack Query, SWR, etc.)

Automatic route prefetching

Asynchronous route elements and error boundaries

File-based Route Generation

Typesafe JSON-first Search Params state management APIs

Path and Search Parameter Schema Validation

Search Param Navigation APIs

Custom Search Param parser/serializer support

Search param middleware

Route matching/loading middleware

What you get with TanStack Start:

Full-document SSR

Streaming

Server Functions / RPCs

Bundling

Deployment

Full-Stack Type Safety

3

https://vite.dev/

Summary:

Use TanStack Router for client-side routing and TanStack Start for full-stack routing.

How does it work?

TanStack Start uses Vite to bundle and deploy your application and empowers amazing features like:

Provide a unified API for SSR, streaming, and hydration

Extract server-only code from your client-side code (e.g., server functions)

Bundle your application for deployment to any hosting provider

When should I use it?

TanStack Start is perfect if you want to build a full-stack React application with:

Full-document SSR & Hydration

Streaming

Server Functions / RPCs

Full-Stack Type Safety

Robust Routing

Rich Client-Side Interactivity

When might I not want to use it?

It's not suitable if:

Your site will be 100% static

Your goal is a server-rendered site with zero JS or minimal client-side interactivity

You're seeking a React-Server-Component-first framework (though support for RSCs is coming soon!)

How is TanStack Start funded?

TanStack collaborates with partners to offer the best developer experience:

Clerk: The best authentication solution for modern web apps, integrating deeply with TanStack Start.

Learn more

Netlify: Leading hosting platform. Learn more

Neon: Serverless Postgres database, ideal for full-stack apps. Learn more

Convex: Seamless real-time database backend. Learn more

Sentry: Monitoring and error tracking. Learn more

Ready to get started?

Proceed to the next page to learn how to install TanStack Start and create your first app!

Edit on GitHub

On this page

Router or Start?

How does it work?

When should I use it?

When might I not want to use it?

4

https://vitejs.dev/
https://go.clerk.com/wOwHtuJ
https://www.netlify.com/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack
https://github.com/tanstack/router/edit/main/docs/start/framework/react/overview.md

How is TanStack Start funded?

Ready to get started?

Additional Links

Discord

Getting Started

Our Partners

Clerk: Modern web authentication solutions.

Netlify: Web hosting platform.

Neon: Serverless Postgres.

Convex: Real-time database.

Sentry: Observability platform.

More Resources

TanStack Table: Supercharge your tables or build a datagrid for multiple frontend frameworks.

TanStack DB: Collections, live queries, and optimistic mutations for reactive UI.

Subscribe to Bytes

Your weekly dose of JavaScript news, delivered every Monday to over 100,000 devs, for free.

Subscribe

No spam. Unsubscribe at any time.

5

https://tlinz.com/discord
https://start/latest/docs/framework/react/getting-started
https://go.clerk.com/wOwHtuJ
https://netlify.com/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack
https://start/latest/docs/table
https://start/latest/docs/db

Getting Started | TanStack Start
React Docs

TanStack Start v0

Auto

Framework

React

Version

Latest

Search...

+ K

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

react

Server Functions

react

Static Server Functions

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

Path Aliases

react

Tailwind CSS Integration

6

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

react

Migrate from Next.js

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

Overview

Quick Start

Our Partners

Official Deployment Partner

Netlify

Neon

Convex

Sentry

TanStack Forms

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit and

Svelte. Learn More

TanStack Config

The build and publish utilities used by all of our projects. Use it if you dare! Learn More

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

7

https://go.clerk.com/wOwHtuJ
https://netlify.com/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack

Subscribe

No spam. Unsubscribe at any time.

8

Quick Start | TanStack Start React
Docs

On this page

Impatient?

Examples

Stackblitz

Quick Deploy

Manual Deploy

Other Router Examples

Quick Start

Impatient?

If you're impatient, you can clone and run the Basic example right away with the following commands:

npx gitpick TanStack/router/tree/main/examples/react/start-basic start-basic

cd start-basic

npm install

npm run dev

You can replace start-basic with the slug of any other example from the list below.

Once you've cloned the example you want, head back to the Learn the Basics guide to learn how to use

TanStack Start!

Examples

TanStack Start has lots of examples to get you started. Pick one below:

Basic (start-basic)

Basic + Auth (start-basic-auth)

Counter (start-counter)

Basic + React Query (start-basic-react-query)

Clerk Auth (start-clerk-basic)

Convex + Trellaux (start-convex-trellaux)

Supabase (start-supabase-basic)

Trellaux (start-trellaux)

WorkOS (start-workos)

Material UI (start-material-ui)

Stackblitz

Each example has an embedded Stackblitz preview to help you find a good starting point.

Quick Deploy

9

https://github.com/TanStack/router/tree/main/examples/react/start-basic
https://start/latest/docs/framework/react/learn-the-basics
https://github.com/TanStack/router/tree/main/examples/react/start-basic
https://github.com/TanStack/router/tree/main/examples/react/start-basic-auth
https://github.com/TanStack/router/tree/main/examples/react/start-counter
https://github.com/TanStack/router/tree/main/examples/react/start-basic-react-query
https://github.com/TanStack/router/tree/main/examples/react/start-clerk-basic
https://github.com/TanStack/router/tree/main/examples/react/start-convex-trellaux
https://github.com/TanStack/router/tree/main/examples/react/start-supabase-basic
https://github.com/TanStack/router/tree/main/examples/react/start-trellaux
https://github.com/TanStack/router/tree/main/examples/react/start-workos
https://github.com/TanStack/router/tree/main/examples/react/start-material-ui

Click the Deploy to Netlify button on any example's page to clone and deploy it directly.

Manual Deploy

To clone and deploy an example elsewhere, run:

npx gitpick TanStack/router/tree/main/examples/react/EXAMPLE_SLUG my-new-project

cd my-new-project

npm install

npm run dev

Replace EXAMPLE_SLUG with the specific example slug.

After deploying, return to the Learn the Basics to learn how to use TanStack Start!

Other Router Examples

While not Start-specific, these examples help understand how TanStack Router works:

Quickstart (file-based)

Basic (file-based)

Kitchen Sink (file-based)

Kitchen Sink + React Query

Location Masking

Authenticated Routes

Scroll Restoration

Deferred Data

Navigation Blocking

View Transitions

With tRPC

With tRPC + React Query

Navigation Links

Get Started

Build from Scratch

Our Partners

Clerk (Official Deployment Partner)

Netlify

Neon

Convex

Sentry

Resources

TanStack Form

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit,

and Svelte.

Learn More

10

https://start/latest/docs/framework/react/learn-the-basics
https://github.com/TanStack/router/tree/main/examples/react/quickstart-file-based
https://github.com/TanStack/router/tree/main/examples/react/basic-file-based
https://github.com/TanStack/router/tree/main/examples/react/kitchen-sink-file-based
https://github.com/TanStack/router/tree/main/examples/react/kitchen-sink-react-query-file-based
https://github.com/TanStack/router/tree/main/examples/react/location-masking
https://github.com/TanStack/router/tree/main/examples/react/authenticated-routes
https://github.com/TanStack/router/tree/main/examples/react/scroll-restoration
https://github.com/TanStack/router/tree/main/examples/react/deferred-data
https://github.com/TanStack/router/tree/main/examples/react/navigation-blocking
https://github.com/TanStack/router/tree/main/examples/react/view-transitions
https://github.com/TanStack/router/tree/main/examples/react/with-trpc
https://github.com/TanStack/router/tree/main/examples/react/with-trpc-react-query
https://start/latest/docs/framework/react/getting-started
https://start/latest/docs/framework/react/build-from-scratch
https://go.clerk.com/wOwHtuJ
https://netlify.com/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack
https://start/latest/docs/form
https://start/latest/docs/form

TanStack Config

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

No spam. Unsubscribe at any time.

Subscribe

11

https://start/latest/docs/config
https://start/latest/docs/config

Build a Project from Scratch |
TanStack Start React Docs

Link to GitHub edit

On this page

TypeScript Configuration

Install Dependencies

Update Configuration Files

Add the Basic Templating

The Router Configuration

The Root of Your Application

Writing Your First Route

Note

If you chose to quick start with an example or cloned project, you can skip this guide and move to the Learn

the Basics.

So you want to build a TanStack Start project
from scratch?

This guide will help you build a very basic TanStack Start web application. Together, we will use TanStack Start

to:

Serve an index page...

Which displays a counter...

With a button to increment the counter persistently.

Here is what that will look like

Let's create a new project directory and initialize it.

mkdir myApp

cd myApp

npm init -y

Note:

> We use npm in all of these examples, but you can use your package manager of choice instead.

TypeScript Configuration

We highly recommend using TypeScript with TanStack Start. Create a tsconfig.json file with at least the

following settings:

12

https://github.com/tanstack/router/edit/main/docs/start/framework/react/build-from-scratch.md
https://start/latest/docs/framework/react/learn-the-basics
https://start/latest/docs/framework/react/learn-the-basics
https://stackblitz.com/github/tanstack/router/tree/main/examples/react/start-counter

{

 "compilerOptions": {

 "jsx": "react-jsx",

 "moduleResolution": "Bundler",

 "module": "ESNext",

 "target": "ES2022",

 "skipLibCheck": true,

 "strictNullChecks": true

 }

}

Note:

> Enabling verbatimModuleSyntax can result in server bundles leaking into client bundles. It is

recommended to keep this option disabled.

Install Dependencies

TanStack Start is powered by Vite and TanStack Router, and requires them as dependencies.

To install them, run:

npm i @tanstack/react-start @tanstack/react-router vite

You'll also need React:

npm i react react-dom

And some TypeScript packages:

npm i -D typescript @types/react @types/react-dom vite-tsconfig-paths

Update Configuration Files

Update your package.json to use Vite's CLI and set "type": "module" :

{

 // ...

 "type": "module",

 "scripts": {

 "dev": "vite dev",

 "build": "vite build"

 }

}

Then, configure TanStack Start's Vite plugin in vite.config.ts :

// vite.config.ts

import { defineConfig } from 'vite'

import tsConfigPaths from 'vite-tsconfig-paths'

import { tanstackStart } from '@tanstack/react-start/plugin/vite'

export default defineConfig({

 server: {

 port: 3000,

 },

13

https://vite.dev/
https://tanstack.com/router

 plugins: [tsConfigPaths(), tanstackStart()],

})

Add the Basic Templating

There are 2 required files for TanStack Start usage:

1. The router configuration

2. The root of your application

Once configured, your file tree should look like:

.

├── src/

│ ├── routes/

│ │ └── __root.tsx

│ ├── router.tsx

│ ├── routeTree.gen.ts

├── .gitignore

├── vite.config.ts

├── package.json

└── tsconfig.json

The Router Configuration

This file dictates the behavior of TanStack Router used within Start. You can configure preloading, data

caching, etc.

Note:

You won't have routeTree.gen.ts yet; it will be generated when you run TanStack Start.

// src/router.tsx

import { createRouter as createTanStackRouter } from '@tanstack/react-router'

import { routeTree } from './routeTree.gen'

export function createRouter() {

 const router = createTanStackRouter({

 routeTree,

 scrollRestoration: true,

 })

 return router

}

declare module '@tanstack/react-router' {

 interface Register {

 router: ReturnType<typeof createRouter>

 }

}

The Root of Your Application

Create the root component that wraps all routes:

14

// src/routes/__root.tsx

/// <reference types="vite/client" />

import type { ReactNode } from 'react'

import {

 Outlet,

 createRootRoute,

 HeadContent,

 Scripts,

} from '@tanstack/react-router'

export const Route = createRootRoute({

 head: () => ({

 meta: [

 { charSet: 'utf-8' },

 { name: 'viewport', content: 'width=device-width, initial-scale=1' },

 { title: 'TanStack Start Starter' },

],

 }),

 component: RootComponent,

})

function RootComponent() {

 return (

 <RootDocument>

 <Outlet />

 </RootDocument>

)

}

function RootDocument({ children }: Readonly<{ children: ReactNode }>) {

 return (

 <html>

 <head>

 <HeadContent />

 </head>

 <body>

 {children}

 <Scripts />

 </body>

 </html>

)

}

Writing Your First Route

Create a route in src/routes/index.tsx :

// src/routes/index.tsx

import * as fs from 'node:fs'

import { createFileRoute, useRouter } from '@tanstack/react-router'

import { createServerFn } from '@tanstack/react-start'

const filePath = 'count.txt'

15

async function readCount() {

 return parseInt(

 await fs.promises.readFile(filePath, 'utf-8').catch(() => '0'),

)

}

const getCount = createServerFn({

 method: 'GET',

}).handler(() => {

 return readCount()

})

const updateCount = createServerFn({ method: 'POST' })

 .validator((d: number) => d)

 .handler(async ({ data }) => {

 const count = await readCount()

 await fs.promises.writeFile(filePath, `${count + data}`)

 })

export const Route = createFileRoute('/')({

 component: Home,

 loader: async () => await getCount(),

})

function Home() {

 const router = useRouter()

 const state = Route.useLoaderData()

 return (

 <button

 type="button"

 onClick={() => {

 updateCount({ data: 1 }).then(() => {

 router.invalidate()

 })

 }}

 >

 Add 1 to {state}?

 </button>

)

}

Final notes

That's it! 🤯 You've set up a TanStack Start project and created your first route. 🎉

Run npm run dev to start the server and open http://localhost:3000 to see your app.

Want to deploy? Check out the hosting guide.

16

https://start/latest/docs/framework/react/hosting

Learn the Basics | TanStack Start
React Docs

Navigation

Dependencies

It all "Starts" with the Router

Route Generation

The Server Entry Point (Optional)

The Client Entry Point (Optional)

The Root of Your Application

Routes

Navigation

Server Functions (RPCs)

Mutations

Data Loading

Dependencies

This guide will help you learn the basics behind how TanStack Start works, regardless of how you set up your

project.

TanStack Start is powered by Vite and TanStack Router.

TanStack Router: A router for building web applications.

Vite: A build tool for bundling your application.

It all "Starts" with the Router

This is the file that will dictate the behavior of TanStack Router used within Start. Here, you can configure

everything from the default preloading functionality to caching staleness.

// app/router.tsx

import { createRouter as createTanStackRouter } from '@tanstack/react-router'

import { routeTree } from './routeTree.gen'

export function createRouter() {

 const router = createTanStackRouter({

 routeTree,

 scrollRestoration: true,

 })

 return router

}

declare module '@tanstack/react-router' {

 interface Register {

 router: ReturnType<typeof createRouter>

17

https://vite.dev/
https://tanstack.com/router

 }

}

Notice the scrollRestoration property. This is used to restore the scroll position of the page when

navigating between routes.

Route Generation

The routeTree.gen.ts file is generated when you run TanStack Start (via npm run dev or npm run

start) for the first time. It contains the generated route tree and utility types that make TanStack Start fully

type-safe.

The Server Entry Point (Optional)

Note: The server entry point is optional out of the box. If not provided, TanStack Start will automatically

handle the server entry point for you using the default setup below:

// src/server.ts

import {

 createStartHandler,

 defaultStreamHandler,

} from '@tanstack/react-start/server'

import { createRouter } from './router'

export default createStartHandler({

 createRouter,

})(defaultStreamHandler)

Whether statically generating or serving dynamically, this server.ts file is the entry point for SSR.

It's important that a new router is created for each request to keep data unique.

defaultStreamHandler streams HTML to the client, enabling streaming SSR.

The Client Entry Point (Optional)

Note: The client entry point is optional. If not provided, TanStack Start manages it automatically.

To hydrate on the client and enable client-side routing:

// app/client.tsx

import { StartClient } from '@tanstack/react-start'

import { StrictMode } from 'react'

import { hydrateRoot } from 'react-dom/client'

import { createRouter } from './router'

const router = createRouter()

hydrateRoot(

 document,

 <StrictMode>

 <StartClient router={router} />

 </StrictMode>,

)

18

This setup hydrates the app after server render, enabling client-side routing once the initial HTML is loaded.

The Root of Your Application

The __root route wraps all app routes and functions as the application shell. It is always rendered and is

ideal for global layout logic.

// app/routes/__root.tsx

import {

 Outlet,

 createRootRoute,

 HeadContent,

 Scripts,

} from '@tanstack/react-router'

import type { ReactNode } from 'react'

export const Route = createRootRoute({

 head: () => ({

 meta: [

 { charSet: 'utf-8' },

 { name: 'viewport', content: 'width=device-width, initial-scale=1' },

 { title: 'TanStack Start Starter' },

],

 }),

 component: RootComponent,

})

function RootComponent() {

 return (

 <RootDocument>

 <Outlet />

 </RootDocument>

)

}

function RootDocument({ children }: Readonly<{ children: ReactNode }>) {

 return (

 <html>

 <head>

 <HeadContent />

 </head>

 <body>

 {children}

 <Scripts />

 </body>

 </html>

)

}

Notes:

This layout may evolve when SPA mode is introduced.

<Scripts /> loads all client-side JavaScript.

19

Routes

Routes are defined with createFileRoute , are code-split, lazy-loaded, and can coordinate data fetching

using loaders:

// app/routes/index.tsx

import * as fs from 'node:fs'

import { createFileRoute, useRouter } from '@tanstack/react-router'

import { createServerFn } from '@tanstack/react-start'

const filePath = 'count.txt'

async function readCount() {

 return parseInt(

 await fs.promises.readFile(filePath, 'utf-8').catch(() => '0'),

)

}

const getCount = createServerFn({ method: 'GET' }).handler(() => readCount())

const updateCount = createServerFn({ method: 'POST' })

 .validator((d: number) => d)

 .handler(async ({ data }) => {

 const count = await readCount()

 await fs.promises.writeFile(filePath, `${count + data}`)

 })

export const Route = createFileRoute('/')({

 component: Home,

 loader: async () => await getCount(),

})

function Home() {

 const router = useRouter()

 const state = Route.useLoaderData()

 return (

 <button

 type="button"

 onClick={() => {

 updateCount({ data: 1 }).then(() => {

 router.invalidate()

 })

 }}

 >

 Add 1 to {state}?

 </button>

)

}

Navigation

TanStack Start is built on TanStack Router. Features include:

20

<Link to="/path"> for navigation

useNavigate() for imperative routing

useRouter() to access router instance

Reactive hooks that update on router state changes

Example of using <Link> :

import { Link } from '@tanstack/react-router'

function Home() {

 return <Link to="/about">About</Link>

}

For more info, refer to the navigation guide.

Server Functions (RPCs)

Server functions, created with createServerFn , can be called from SSR and client:

import { createServerFn } from '@tanstack/react-start'

import * as fs from 'node:fs'

import { z } from 'zod'

const getUserById = createServerFn({ method: 'GET' })

 .validator(z.string())

 .handler(async ({ data }) => {

 // server-side logic here

 return db.query.users.findFirst({ where: { id: data } })

 })

// usage

const user = await getUserById({ data: '1' })

More details: Server functions guide.

Mutations

Mutations are performed with server functions, optionally invalidating cached data:

import { createServerFn } from '@tanstack/react-start'

import { z } from 'zod'

import { dbUpdateUser } from '...'

const UserSchema = z.object({ id: z.string(), name: z.string() })

export type User = z.infer<typeof UserSchema>

export const updateUser = createServerFn({ method: 'POST' })

 .validator(UserSchema)

 .handler(({ data }) => dbUpdateUser(data))

// Usage example with React Query and Router:

import { useQueryClient } from '@tanstack/react-query'

import { useRouter } from '@tanstack/react-router'

import { useServerFn } from '@tanstack/react-start'

21

import { updateUser, type User } from '...'

function MyComponent() {

 const router = useRouter()

 const queryClient = useQueryClient()

 const _updateUser = useServerFn(updateUser)

 const handleClick = async () => {

 await _updateUser({ data: { id: '1', name: 'John' } })

 router.invalidate()

 queryClient.invalidateQueries({ queryKey: ['users', 'updateUser', '1'] })

 }

 return <button onClick={handleClick}>Click Me</button>

}

Learn more: Mutations guide.

Data Loading

Data loaders fetch data during SSR and client-side rendering, and are used via loader functions:

// Example route with data loader

export const Route = createFileRoute('/example')({

 component: ExampleComponent,

 loader: async () => {

 // fetch data here

 },

})

Features:

Executed on server and client

Supports server-side logic via server functions

Data is cached and revalidated automatically

More info: Data loading guide.

Edit on GitHub

22

https://github.com/tanstack/router/edit/main/docs/start/framework/react/learn-the-basics.md

Server Functions

What are Server Functions?

Server functions allow you to specify logic that can be invoked almost anywhere (even the client), but run only

on the server. In fact, they are not so different from an API Route, but with a few key differences:

They do not have a stable public URL.

They can be called from anywhere in your application, including loaders, hooks, components, server

routes, etc.

However, they are similar to regular API Routes in that:

They have access to the request context, allowing you to read headers, set cookies, and more.

They can access sensitive information, such as environment variables, without exposing them to the

client.

They can be used to perform any kind of server-side logic, such as fetching data from a database,

sending emails, or interacting with other services.

They can return any value, including primitives, JSON-serializable objects, and even raw Response

objects.

They can throw errors, including redirects and notFounds, which can be handled automatically by the

router.

How are server functions different from "React Server Functions"?

TanStack Server Functions are not tied to a specific front-end framework, and can be used with any

front-end framework or none at all.

TanStack Server Functions are backed by standard HTTP requests and can be called as often as you

like without suffering from serial-execution bottlenecks.

How do they work?

Server functions can be defined anywhere in your application, but must be defined at the top level of a file.

They can be called throughout your application, including loaders, hooks, etc. Traditionally, this pattern is

known as a Remote Procedure Call (RPC), but due to the isomorphic nature of these functions, we refer to

them as server functions.

On the server bundle, server functions logic is left alone. Nothing needed since they are already in the

correct place.

On the client, server functions will be removed; they exist only on the server. Any calls to the server

function on the client will be replaced with a fetch request to the server to execute that function and

send the response back to the client.

Server Function Middleware

Server functions can use middleware to share logic, context, common operations, prerequisites, and more. To

learn more about middleware, see the Middleware guide.

Defining Server Functions

Server functions are defined with the createServerFn function from the @tanstack/react-start

package. This function optionally takes an options argument for configuration like HTTP method and

response type, and allows chaining to define the body, input validation, middleware, etc.

23

https://start.tanstack.com/docs/framework/react/middleware

Example:

// getServerTime.ts

import { createServerFn } from '@tanstack/react-start'

export const getServerTime = createServerFn().handler(async () => {

 // Wait for 1 second

 await new Promise((resolve) => setTimeout(resolve, 1000))

 // Return the current time

 return new Date().toISOString()

})

Configuration Options

When creating a server function, you can provide options to customize behavior:

import { createServerFn } from '@tanstack/react-start'

export const getData = createServerFn({

 method: 'GET', // HTTP method

 response: 'data', // Response mode

}).handler(async () => {

 // Implementation

})

Available Options:

method

Specifies the HTTP method:

method?: 'GET' | 'POST'

Defaults to 'GET' if not specified.

response

Controls how responses are processed:

response?: 'data' | 'full' | 'raw'

Options:

'data' : Parses JSON responses, returns just data (default).

'full' : Returns response object with data, error, etc.

'raw' : Returns the raw Response object, for streaming, headers, etc.

Where can I call server functions?

From server-side code

From client-side code

From other server functions

Warning:

Server functions cannot be called from API Routes. For sharing logic between server functions and API

Routes, extract the core logic into utility functions.

24

Accepting Parameters

Server functions accept a single parameter of various types:

Basic JavaScript types:

string

number

boolean

null

Array

Object

FormData

ReadableStream (of above types)

Promise (of above types)

Example:

import { createServerFn } from '@tanstack/react-start'

export const greet = createServerFn({

 method: 'GET',

})

.validator((data: string) => data)

.handler(async (ctx) => {

 return `Hello, ${ctx.data}!`

})

// Usage:

greet({ data: 'John' })

Runtime Input Validation / Type Safety

You can configure validation to ensure correct input at runtime via .validator() . This improves safety

and error messaging.

Validators accept the input data and return the processed value, which is passed to the handler.

Example with basic validation:

import { createServerFn } from '@tanstack/react-start'

type Person = { name: string }

export const greet = createServerFn({ method: 'GET' })

 .validator((person: unknown): Person => {

 if (typeof person !== 'object' || person === null) {

 throw new Error('Person must be an object')

 }

 if ('name' in person && typeof person.name !== 'string') {

 throw new Error('Person.name must be a string')

 }

 return person as Person

 })

 .handler(async ({ data }) => {

25

 return `Hello, ${data.name}!`

 })

Using a Validation Library (e.g., Zod):

import { createServerFn } from '@tanstack/react-start'

import { z } from 'zod'

const PersonSchema = z.object({ name: z.string() })

export const greet = createServerFn({ method: 'GET' })

 .validator((person: unknown) => PersonSchema.parse(person))

 .handler(async (ctx) => {

 return `Hello, ${ctx.data.name}!`

 })

greet({ data: { name: 'John' } })

Type Safety

Since server functions cross network boundaries, validating input/output at runtime is crucial to prevent

errors and security issues. The return type of .validator() dictates the data passed to the handler.

import { createServerFn } from '@tanstack/react-start'

type Person = { name: string }

export const greet = createServerFn({ method: 'GET' })

 .validator((person: unknown): Person => {

 if (typeof person !== 'object' || person === null) {

 throw new Error('Person must be an object')

 }

 if ('name' in person && typeof person.name !== 'string') {

 throw new Error('Person.name must be a string')

 }

 return person as Person

 })

 .handler(async ({ data }) => {

 return `Hello, ${data.name}!`

 })

// Usage:

greet({ data: { name: 'John' } }) // OK

greet({ data: { name: 123 } }) // Error: Argument of type '{ name: number; }' is not a

Inference

Server functions infer their input and output types based on .validator() and .handler() . Validators

can be transformed, enabling complex data transformations.

Example with Zod:

import { createServerFn } from '@tanstack/react-start'

import { z } from 'zod'

26

const transactionSchema = z.object({

 amount: z.string().transform((val) => parseInt(val, 10)),

})

const createTransaction = createServerFn()

 .validator(transactionSchema)

 .handler(({ data }) => {

 return data.amount // Returns a number

 })

createTransaction({ data: { amount: '123' } }) // Accepts string, outputs number

Non-Validated Inference

You can also skip validation and provide explicit types via an identity function for input/output:

import { createServerFn } from '@tanstack/react-start'

type Person = { name: string }

export const greet = createServerFn({ method: 'GET' })

 .validator((d: Person) => d)

 .handler(async ({ data }) => {

 return `Hello, ${data.name}!`

 })

// Usage:

greet({ data: { name: 'John' } })

JSON Parameters

Server functions can accept JSON-serializable objects:

import { createServerFn } from '@tanstack/react-start'

type Person = { name: string; age: number }

export const greet = createServerFn({ method: 'GET' })

 .validator((data: Person) => data)

 .handler(async ({ data }) => {

 return `Hello, ${data.name}! You are ${data.age} years old.`

 })

greet({ data: { name: 'John', age: 34 } })

FormData Parameters

Server functions can accept FormData objects, validating and parsing fields:

import { createServerFn } from '@tanstack/react-start'

export const greetUser = createServerFn({ method: 'POST' })

 .validator((data) => {

27

 if (!(data instanceof FormData)) {

 throw new Error('Invalid form data')

 }

 const name = data.get('name')

 const age = data.get('age')

 if (!name || !age) {

 throw new Error('Name and age are required')

 }

 return {

 name: name.toString(),

 age: parseInt(age.toString(), 10),

 }

 })

 .handler(async ({ data: { name, age } }) => {

 return `Hello, ${name}! You are ${age} years old.`

 })

// Usage example with form submission:

function Test() {

 return (

 <form

 onSubmit={async (event) => {

 event.preventDefault()

 const formData = new FormData(event.currentTarget)

 const response = await greetUser({ data: formData })

 console.log(response)

 }}

 >

 <input name="name" />

 <input name="age" />

 <button type="submit">Submit</button>

 </form>

)

}

Server Function Context

Access request context within server functions via utilities from @tanstack/react-start/server . For

example:

import { createServerFn } from '@tanstack/react-start'

import { getWebRequest } from '@tanstack/react-start/server'

export const getServerTime = createServerFn({ method: 'GET' }).handler(

 async () => {

 const request = getWebRequest()

 console.log(request.method) // e.g., GET

 console.log(request.headers.get('User-Agent'))

 },

)

Other context utilities include:

getHeaders()

getHeader('Header-Name')

28

Setting headers, cookies, response status, etc.

Returning Values

Server functions can return:

Primitives

JSON-serializable objects

Redirect or notFound errors (can be thrown)

Raw Response objects

Returning primitives and JSON:

import { createServerFn } from '@tanstack/react-start'

export const getServerTime = createServerFn({ method: 'GET' }).handler(async () => {

 return new Date().toISOString()

})

export const getServerData = createServerFn({ method: 'GET' }).handler(async () => {

 return { message: 'Hello, World!' }

})

Respond with custom headers:

import { createServerFn } from '@tanstack/react-start'

import { setHeader } from '@tanstack/react-start/server'

export const getServerTime = createServerFn({ method: 'GET' }).handler(async () => {

 setHeader('X-Custom-Header', 'value')

 return new Date().toISOString()

})

Respond with custom status code:

import { createServerFn } from '@tanstack/react-start'

import { setResponseStatus } from '@tanstack/react-start/server'

export const getServerTime = createServerFn({ method: 'GET' }).handler(async () => {

 setResponseStatus(201)

 return new Date().toISOString()

})

Return raw Response object:

import { createServerFn } from '@tanstack/react-start'

export const getServerTime = createServerFn({

 method: 'GET',

 response: 'raw',

}).handler(async () => {

 return fetch('https://example.com/time.txt')

})

29

This option is useful for:

Streaming APIs

Server-sent events

Long-polling

Custom content types/binary data

Throwing Errors

Aside from redirects and notFound, server functions can throw custom errors:

import { createServerFn } from '@tanstack/react-start'

export const doStuff = createServerFn({ method: 'GET' }).handler(async () => {

 throw new Error('Something went wrong!')

})

// Usage:

try {

 await doStuff()

} catch (error) {

 console.error(error) // logs the error object

}

Cancellation

Server functions support cancellation with AbortSignal :

import { createServerFn } from '@tanstack/react-start'

export const abortableServerFn = createServerFn().handler(async ({ signal }) => {

 return new Promise((resolve, reject) => {

 if (signal.aborted) {

 return reject(new Error('Aborted before start'))

 }

 const timerId = setTimeout(() => {

 resolve('Result after delay')

 }, 1000)

 const onAbort = () => {

 clearTimeout(timerId)

 reject(new Error('Aborted'))

 }

 signal.addEventListener('abort', onAbort)

 })

})

Usage example:

function Test() {

 const controller = new AbortController()

 const promise = abortableServerFn({ signal: controller.signal })

 setTimeout(() => controller.abort(), 500)

 try {

 const result = await promise

 console.log(result) // never reached if aborted

30

 } catch (error) {

 console.error(error) // "Aborted"

 }

}

Calling server functions from within route
lifecycles

You can call server functions in route loaders, beforeLoad, or other router-controlled APIs, which handle

errors, redirects, etc.:

import { getServerTime } from './getServerTime'

export const Route = createFileRoute('/time')({

 loader: async () => {

 const time = await getServerTime()

 return { time }

 },

})

Calling server functions from hooks and
components

Use the useServerFn hook from @tanstack/react-start :

import { useServerFn } from '@tanstack/react-start'

import { useQuery } from '@tanstack/react-query'

import { getServerTime } from './getServerTime'

export function Time() {

 const getTime = useServerFn(getServerTime)

 const timeQuery = useQuery({

 queryKey: 'time',

 queryFn: () => getTime(),

 })

}

Calling server functions anywhere else

Redirects and notFound errors thrown will be automatically handled only when called from:

Route lifecycles

Components using useServerFn

Other locations require manual error handling.

Redirects

Server functions can throw a redirect error to redirect the user:

import { redirect } from '@tanstack/react-router'

import { createServerFn } from '@tanstack/react-start'

31

export const doStuff = createServerFn({ method: 'GET' }).handler(async () => {

 throw redirect({ to: '/' })

})

Options include:

Path Params, Search Params, Hash

status code (e.g., 301, 302)

External redirect example:

import { redirect } from '@tanstack/react-router'

import { createServerFn } from '@tanstack/react-start'

export const auth = createServerFn({ method: 'GET' }).handler(async () => {

 throw redirect({ href: 'https://authprovider.com/login' })

})

⚠ Do not use sendRedirect from @tanstack/react-start/server , as it sends a full

page redirect, not suitable for SPA navigation.

Redirect Headers

Set custom headers on redirect:

import { redirect } from '@tanstack/react-router'

import { createServerFn } from '@tanstack/react-start'

export const doStuff = createServerFn({ method: 'GET' }).handler(async () => {

 throw redirect({

 to: '/',

 headers: {

 'X-Custom-Header': 'value',

 },

 })

})

Not Found

Throw notFound() inside route loaders or beforeLoad to signal resource not found:

import { notFound } from '@tanstack/react-router'

import { createServerFn } from '@tanstack/react-start'

const getStuff = createServerFn({ method: 'GET' }).handler(async () => {

 if (Math.random() < 0.5) throw notFound()

 return { stuff: 'stuff' }

})

// Usage in route:

export const Route = createFileRoute('/stuff')({

 loader: async () => {

 const stuff = await getStuff()

 return { stuff }

32

 },

})

Handling Errors

Errors other than redirect or notFound are serialized and sent as JSON with a 500 status code. Handle them

gracefully:

import { createServerFn } from '@tanstack/react-start'

export const doStuff = createServerFn({ method: 'GET' }).handler(async () => {

 undefined.foo() // throws error

})

try {

 await doStuff()

} catch (error) {

 // handle error

}

No-JS Server Functions

Without JavaScript, server functions are invoked via <form> submission with the action attribute

pointing to the server function URL.

Example:

const myFn = createServerFn({ method: 'POST' }).validator((formData) => {

 if (!(formData instanceof FormData)) throw new Error('Invalid form data')

 const name = formData.get('name')

 if (!name) throw new Error('Name required')

 return name

})

console.info(myFn.url)

function MyComponent() {

 return (

 <form action={myFn.url} method="POST">

 <input name="name" defaultValue="John" />

 <button type="submit">Submit</button>

 </form>

)

}

Passing arguments via form inputs:

<form

 action={myFn.url}

 method="POST"

 encType="multipart/form-data"

>

 <input name="age" defaultValue="34" />

 <button type="submit">Click me!</button>

</form>

33

Server Function Return Value (non-JS)

When JavaScript is disabled, the server function can respond with a redirect or page refresh, e.g., via HTTP

response with Location .

// Example of reloading page:

return new Response('ok', { status: 301, headers: { Location: '/' } })

Summary

Server functions enable powerful server-side logic accessible from anywhere, with flexible validation,

streaming, and error handling. They are designed to work seamlessly in both client and server environments,

supporting a wide range of use cases, including static generation and fallback behaviors when JavaScript is

disabled.

Edit on GitHub

34

https://github.com/tanstack/router/edit/main/docs/start/framework/react/server-functions.md

Static Server Functions | TanStack
Start React Docs

On this page

What are Static Server Functions?

Customizing the Server Functions Static Cache

What are Static Server Functions?

Static server functions are server functions that are executed at build time and cached as static assets when

using prerendering/static-generation. They can be set to "static" mode by passing the type: 'static'

option to createServerFn :

const myServerFn = createServerFn({ type: 'static' }).handler(async () => {

 return 'Hello, world!'

})

This pattern goes as follows:

Build-time

During build-time prerendering, a server function with type: 'static' is executed.

The result is cached with your build output as a static JSON file under a derived key (function ID +

params/payload hash).

The result is returned as normal during prerendering/static-generation and used to prerender the

page.

Runtime

Initially, the prerendered page's HTML is served and the server function data is embedded in the

HTML.

When the client mounts, the embedded server function data is hydrated.

For future client-side invocations, the server function is replaced with a fetch call to the static JSON

file.

Customizing the Server Functions Static Cache

By default, the static server function cache implementation stores and retrieves static data in the build output

directory via Node's fs module and fetches the data at runtime using a fetch call to the same static file.

This interface can be customized by importing and calling the createServerFnStaticCache function to

create a custom cache implementation and then calling setServerFnStaticCache to set it:

import {

 createServerFnStaticCache,

 setServerFnStaticCache,

} from '@tanstack/react-start/client'

const myCustomStaticCache = createServerFnStaticCache({

35

 setItem: async (ctx, data) => {

 // Store the static data in your custom cache

 },

 getItem: async (ctx) => {

 // Retrieve the static data from your custom cache

 },

 fetchItem: async (ctx) => {

 // During runtime, fetch the static data from your custom cache

 },

})

setServerFnStaticCache(myCustomStaticCache)

Edit on GitHub

On this page

What are Static Server Functions?

Customizing the Server Functions Static Cache

36

https://github.com/tanstack/router/edit/main/docs/start/framework/react/static-server-functions.md

Middleware

What is Server Function Middleware?

Middleware allows you to customize the behavior of server functions created with createServerFn with

things like shared validation, context, and much more. Middleware can even depend on other middleware to

create a chain of operations that are executed hierarchically and in order.

What kinds of things can I do with Middleware
in my Server Functions?

Authentication: Verify a user's identity before executing a server function.

Authorization: Check if a user has the necessary permissions to execute a server function.

Logging: Log requests, responses, and errors.

Observability: Collect metrics, traces, and logs.

Provide Context: Attach data to the request object for use in other middleware or server functions.

Error Handling: Handle errors in a consistent way.

And many more! The possibilities are up to you!

Defining Middleware for Server Functions

Middleware is defined using the createMiddleware function. This function returns a Middleware object

that can be used to continue customizing the middleware with methods like middleware , validator ,

server , and client .

import { createMiddleware } from '@tanstack/react-start'

const loggingMiddleware = createMiddleware({ type: 'function' }).server(

 async ({ next, data }) => {

 console.log('Request received:', data)

 const result = await next()

 console.log('Response processed:', result)

 return result

 },

)

Using Middleware in Your Server Functions

Once you've defined your middleware, you can use it in combination with the createServerFn function to

customize the behavior of your server functions.

import { createServerFn } from '@tanstack/react-start'

import { loggingMiddleware } from './middleware'

const fn = createServerFn()

 .middleware([loggingMiddleware])

 .handler(async () => {

 // ...

 })

37

Middleware Methods

Several methods are available to customize the middleware. If you are (hopefully) using TypeScript, the order

of these methods is enforced by the type system to ensure maximum inference and type safety.

middleware: Add a middleware to the chain.

validator: Modify the data object before it is passed to this middleware and any nested middleware.

server: Define server-side logic that the middleware will execute before any nested middleware and

ultimately a server function, and also provide the result to the next middleware.

client: Define client-side logic that the middleware will execute before any nested middleware and

ultimately the client-side RPC function (or the server-side function), and also provide the result to the

next middleware.

The middleware method

The middleware method is used to dependency middleware to the chain that will be executed before the

current middleware. Just call the middleware method with an array of middleware objects.

import { createMiddleware } from '@tanstack/react-start'

const loggingMiddleware = createMiddleware({ type: 'function' }).middleware([

 authMiddleware,

 loggingMiddleware,

])

Type-safe context and payload validation are also inherited from parent middlewares!

The validator method

The validator method is used to modify the data object before it is passed to this middleware, nested

middleware, and ultimately the server function. This method should receive a function that takes the data

object and returns a validated (and optionally modified) data object. It's common to use a validation library

like zod to do this. Here's an example:

import { createMiddleware } from '@tanstack/react-start'

import { zodValidator } from '@tanstack/zod-adapter'

import { z } from 'zod'

const mySchema = z.object({

 workspaceId: z.string(),

})

const workspaceMiddleware = createMiddleware({ type: 'function' })

 .validator(zodValidator(mySchema))

 .server(({ next, data }) => {

 console.log('Workspace ID:', data.workspaceId)

 return next()

 })

The server method

The server method is used to define server-side logic that the middleware will execute both before and

after any nested middleware and ultimately a server function. This method receives an object with the

following properties:

38

next: A function that, when called, will execute the next middleware in the chain.

data: The data object that was passed to the server function.

context: An object that stores data from parent middleware. It can be extended with additional data that

will be passed to child middleware.

Returning the required result from next

The next function is used to execute the next middleware in the chain. You must await and return (or

return directly) the result of the next function for the chain to continue executing.

import { createMiddleware } from '@tanstack/react-start'

const loggingMiddleware = createMiddleware({ type: 'function' }).server(

 async ({ next }) => {

 console.log('Request received')

 const result = await next()

 console.log('Response processed')

 return result

 },

)

Providing context to the next middleware via next

The next function can be optionally called with an object that has a context property with an object

value. Whatever properties you pass to this context value will be merged into the parent context and

provided to the next middleware.

import { createMiddleware } from '@tanstack/react-start'

const awesomeMiddleware = createMiddleware({ type: 'function' }).server(

 ({ next }) => {

 return next({

 context: {

 isAwesome: Math.random() > 0.5,

 },

 })

 },

)

const loggingMiddleware = createMiddleware({ type: 'function' })

 .middleware([awesomeMiddleware])

 .server(async ({ next, context }) => {

 console.log('Is awesome?', context.isAwesome)

 return next()

 })

Client-Side Logic

Despite server functions being mostly server-side bound operations, there is still plenty of client-side logic

surrounding the outgoing RPC request from the client. This means that we can also define client-side logic in

middleware that will execute on the client side around any nested middleware and ultimately the RPC

function and its response to the client.

Client-side Payload Validation

39

By default, middleware validation is only performed on the server to keep the client bundle size small.

However, you may also choose to validate data on the client side by passing the validateClient: true

option to the createMiddleware function. This will cause the data to be validated on the client side before

being sent to the server, potentially saving a round trip.

Why can't I pass a different validation schema for the client?

The client-side validation schema is derived from the server-side schema. This is because the

client-side validation schema is used to validate the data before it is sent to the server. If the client-

side schema were different from the server-side schema, the server would receive data that it did

not expect, which could lead to unexpected behavior.

import { createMiddleware } from '@tanstack/react-start'

import { zodValidator } from '@tanstack/zod-adapter'

import { z } from 'zod'

const workspaceMiddleware = createMiddleware({ validateClient: true })

 .validator(zodValidator(mySchema))

 .server(({ next, data }) => {

 console.log('Workspace ID:', data.workspaceId)

 return next()

 })

The client method

Client middleware logic is defined using the client method on a Middleware object. This method is

used to define client-side logic that the middleware will execute both before and after any nested middleware

and ultimately the client-side RPC function (or the server-side function if you're doing SSR or calling this

function from another server function).

Client-side middleware logic shares much of the same API as logic created with the server method, but it

is executed on the client side. This includes:

Requiring the next function to be called to continue the chain.

The ability to provide context to the next client middleware via the next function.

The ability to modify the data object before it is passed to the next client middleware.

Similar to the server function, it also receives an object with the following properties:

next: A function that, when called, will execute the next client middleware in the chain.

data: The data object that was passed to the client function.

context: An object that stores data from parent middleware. It can be extended with additional data that

will be passed to child middleware.

const loggingMiddleware = createMiddleware({ type: 'function' }).client(

 async ({ next }) => {

 console.log('Request sent')

 const result = await next()

 console.log('Response received')

 return result

 },

)

Sending client context to the server

Client context is NOT sent to the server by default since this could end up unintentionally sending large

payloads to the server. If you need to send client context to the server, you must call the next function with

40

a sendContext property and object to transmit any data to the server. Any properties passed to

sendContext will be merged, serialized, and sent to the server along with the data and will be available on

the normal context object of any nested server middleware.

const requestLogger = createMiddleware({ type: 'function' })

 .client(async ({ next, context }) => {

 return next({

 sendContext: {

 // Send the workspace ID to the server

 workspaceId: context.workspaceId,

 },

 })

 })

 .server(async ({ next, data, context }) => {

 // Woah! We have the workspace ID from the client!

 console.log('Workspace ID:', context.workspaceId)

 return next()

 })

Client-Sent Context Security

You may have noticed that while client-sent context is type-safe, it is not required to be validated at runtime. If

you pass dynamic user-generated data via context, that could pose a security concern, so if you are sending

dynamic data from the client to the server via context, you should validate it in the server-side middleware

before using it. Here's an example:

import { zodValidator } from '@tanstack/zod-adapter'

import { z } from 'zod'

const requestLogger = createMiddleware({ type: 'function' })

 .client(async ({ next, context }) => {

 return next({

 sendContext: {

 workspaceId: context.workspaceId,

 },

 })

 })

 .server(async ({ next, data, context }) => {

 // Validate the workspace ID before using it

 const workspaceId = zodValidator(z.number()).parse(context.workspaceId)

 console.log('Workspace ID:', workspaceId)

 return next()

 })

Sending server context to the client

Similar to sending client context to the server, you can also send server context to the client by calling the

next function with a sendContext property and object to transmit any data to the client. Any properties

passed to sendContext will be merged, serialized, and sent to the client along with the response and will

be available on the normal context object of any nested client middleware. The returned object of calling

next in client contains the context sent from server to the client and is type-safe. Middleware is able to

infer the context sent from the server to the client from previous middleware chained from the

middleware function.

41

Warning

The return type of next in client can only be inferred from middleware known in the

current middleware chain. Therefore, the most accurate return type of next is in middleware at

the end of the middleware chain.

const serverTimer = createMiddleware({ type: 'function' }).server(

 async ({ next }) => {

 return next({

 sendContext: {

 // Send the current time to the client

 timeFromServer: new Date(),

 },

 })

 },

)

const requestLogger = createMiddleware({ type: 'function' })

 .middleware([serverTimer])

 .client(async ({ next }) => {

 const result = await next()

 // Woah! We have the time from the server!

 console.log('Time from the server:', result.context.timeFromServer)

 return result

 })

Reading/Modifying the Server Response

Middleware that uses the server method executes in the same context as server functions, so you can

follow the exact same Server Function Context Utilities to read and modify anything about the request

headers, status codes, etc.

Modifying the Client Request

Middleware that uses the client method executes in a completely different client-side context than server

functions, so you can't use the same utilities to read and modify the request. However, you can still modify the

request by returning additional properties when calling the next function. Currently supported properties

are:

headers : An object containing headers to be added to the request.

Here's an example of adding an Authorization header to any request using this middleware:

import { getToken } from 'my-auth-library'

const authMiddleware = createMiddleware({ type: 'function' }).client(

 async ({ next }) => {

 return next({

 headers: {

 Authorization: `Bearer ${getToken()}`,

 },

 })

 },

)

42

https://start.tanstack.com/docs/framework/react/server-functions#server-function-context

Using Middleware

Middleware can be used in two different ways:

Global Middleware: Middleware that should be executed for every request.

Server Function Middleware: Middleware that should be executed for a specific server function.

Global Middleware

Global middleware runs automatically for every server function in your application. This is useful for

functionality like authentication, logging, and monitoring that should apply to all requests.

To use global middleware, create a global-middleware.ts file in your project (typically at

app/global-middleware.ts). This file runs in both client and server environments and is where you

register global middleware.

// app/global-middleware.ts

import { registerGlobalMiddleware } from '@tanstack/react-start'

import { authMiddleware } from './middleware'

registerGlobalMiddleware({

 middleware: [authMiddleware],

})

Global Middleware Type Safety

Global middleware types are inherently detached from server functions themselves. This means that if a

global middleware supplies additional context to server functions or other server function-specific

middleware, the types will not be automatically passed through to the server function or other server

function-specific middleware.

// app/global-middleware.ts

registerGlobalMiddleware({

 middleware: [authMiddleware],

})

// authMiddleware.ts

const authMiddleware = createMiddleware({ type: 'function' }).server(

 ({ next, context }) => {

 console.log(context.user) // <-- This will not be typed!

 // ...

 },

)

To solve this, add the global middleware you are trying to reference to the server function's middleware array.

The global middleware will be deduped to a single entry (the global instance), and your server function will

receive the correct types.

import { authMiddleware } from './authMiddleware'

const fn = createServerFn()

 .middleware([authMiddleware])

 .handler(async ({ context }) => {

 console.log(context.user)

 // ...

 })

43

Middleware Execution Order

Middleware is executed dependency-first, starting with global middleware, followed by server function

middleware. The following example will log the following in this order:

globalMiddleware1

globalMiddleware2

a

b

c

d

const globalMiddleware1 = createMiddleware({ type: 'function' }).server(

 async ({ next }) => {

 console.log('globalMiddleware1')

 return next()

 },

)

const globalMiddleware2 = createMiddleware({ type: 'function' }).server(

 async ({ next }) => {

 console.log('globalMiddleware2')

 return next()

 },

)

registerGlobalMiddleware({

 middleware: [globalMiddleware1, globalMiddleware2],

})

const a = createMiddleware({ type: 'function' }).server(async ({ next }) => {

 console.log('a')

 return next()

})

const b = createMiddleware({ type: 'function' })

 .middleware([a])

 .server(async ({ next }) => {

 console.log('b')

 return next()

 })

const c = createMiddleware({ type: 'function' })

 .middleware()

 .server(async ({ next }) => {

 console.log('c')

 return next()

 })

const d = createMiddleware({ type: 'function' })

 .middleware([b, c])

 .server(async () => {

 console.log('d')

 })

const fn = createServerFn()

44

 .middleware([d])

 .server(async () => {

 console.log('fn')

 })

Environment Tree Shaking

Middleware functionality is tree-shaken based on the environment for each bundle produced.

On the server, nothing is tree-shaken, so all code used in middleware will be included in the server

bundle.

On the client, all server-specific code is removed from the client bundle. This means any code used in

the server method is always removed from the client bundle. If validateClient is set to

true , the client-side validation code will be included in the client bundle, otherwise data validation

code will also be removed.

Edit on GitHub

45

https://github.com/tanstack/router/edit/main/docs/start/framework/react/middleware.md

Server Routes

Server Routes and App Routes

Because server routes can be defined in the same directory as your app routes, you can even use the same file

for both!

// routes/hello.tsx

export const ServerRoute = createServerFileRoute().methods({

 POST: async ({ request }) => {

 const body = await request.json()

 return new Response(JSON.stringify({ message: `Hello, ${body.name}!` }))

 },

})

export const Route = createFileRoute('/hello')({

 component: HelloComponent,

})

function HelloComponent() {

 const [reply, setReply] = useState('')

 return (

 <div>

 <button

 onClick={() => {

 fetch('/hello', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({ name: 'Tanner' }),

 })

 .then((res) => res.json())

 .then((data) => setReply(data.message))

 }}

 >

 Say Hello

 </button>

 </div>

)

}

File Route Conventions

Server routes in TanStack Start follow the same file-based routing conventions as TanStack Router. Examples:

/routes/users.ts creates an API route at /users

/routes/users.index.ts also creates /users (errors if duplicate methods)

/routes/users/$id.ts creates /users/$id

/routes/users/$id/posts.ts creates /users/$id/posts

46

/routes/users.$id.posts.ts creates /users/$id/posts

/routes/api/file/$.ts creates /api/file/$

/routes/my-script[.]js.ts creates /my-script.js

Unique Route Paths

Each route can only have one handler file. For example, routes/users.ts (path /users) can't have

other files like:

/routes/users.index.ts

/routes/users.ts

/routes/users/index.ts

—they all resolve to the same route and cause errors.

Escaped Matching

Server routes can match escaped characters. For example, a file named:

routes/users[.]json.ts

creates an API route at /users[.]json .

Pathless Layout Routes and Break-out Routes

Supported for similar middleware functionality:

Pathless layout routes add middleware to a group

Break-out routes "break out" of parent middleware

Nested Directories vs File-names

File naming is flexible—you can organize by directories or filenames as makes sense. Read more in the

TanStack Router File-based Routing Guide.

Handling Server Route Requests

Handled via Start's createStartHandler in your server.ts .

// server.ts

import {

 createStartHandler,

 defaultStreamHandler,

} from '@tanstack/react-start/server'

import { createRouter } from './router'

export default createStartHandler({

 createRouter,

})(defaultStreamHandler)

The handler matches requests to routes and runs middleware/handlers.

Custom server handler example:

47

https://router.tanstack.com/docs/routing/file-based-routing

// server.ts

import { createStartHandler } from '@tanstack/react-start/server'

export default defineHandler((event) => {

 const startHandler = createStartHandler({

 createRouter,

 })(defaultStreamHandler)

 return startHandler(event)

})

Defining a Server Route

Create by exporting a ServerRoute from a route file, using createServerFileRoute() . You can:

Add route middleware

Define handlers for HTTP methods

// routes/hello.ts

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ request }) => {

 return new Response('Hello, World! from ' + request.url)

 },

})

Defining a Server Route Handler

Two options:

1. Direct handler function:

// routes/hello.ts

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ request }) => {

 return new Response('Hello, World! from ' + request.url)

 },

})

2. Using handler() method for advanced cases:

// routes/hello.ts

export const ServerRoute = createServerFileRoute().methods((api) => ({

 GET: api.middleware([loggerMiddleware]).handler(async ({ request }) => {

 return new Response('Hello, World! from ' + request.url)

 }),

}))

Handler Context

Each HTTP method handler receives an object with:

request : The incoming Request object (MDN Docs)

params : Dynamic route parameters, e.g., for /users/$id , params = { id: '123' }

context : Shared data between middleware

Returns Response , Promise<Response> , or helpers like json() .

48

https://developer.mozilla.org/en-US/docs/Web/API/Request

Dynamic Path Params

Example for route /users/$id :

// routes/users/$id.ts

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ params }) => {

 const { id } = params

 return new Response(`User ID: ${id}`)

 },

})

Visit /users/123 => response: User ID: 123

Multiple parameters:

// routes/users/$id/posts/$postId.ts

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ params }) => {

 const { id, postId } = params

 return new Response(`User ID: ${id}, Post ID: ${postId}`)

 },

})

Visit /users/123/posts/456 for User ID: 123, Post ID: 456 .

Wildcard/Splat Param

Supported by appending $ at the end of the path:

// routes/file/$.ts

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ params }) => {

 const { _splat } = params

 return new Response(`File: ${_splat}`)

 },

})

Visit /file/hello.txt => File: hello.txt

Handling requests with a body

Add handlers for methods like POST , PUT , PATCH , DELETE . Access body with request.json() :

// routes/hello.ts

export const ServerRoute = createServerFileRoute().methods({

 POST: async ({ request }) => {

 const body = await request.json()

 return new Response(`Hello, ${body.name}!`)

 },

})

Post example with JSON body { "name": "Tanner" } returns "Hello, Tanner!" .

Responding with JSON

49

Pattern:

// routes/hello.ts

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ request }) => {

 return new Response(JSON.stringify({ message: 'Hello, World!' }), {

 headers: {

 'Content-Type': 'application/json',

 },

 })

 },

})

Using the json() helper function

Easier:

// routes/hello.ts

import { json } from '@tanstack/react-start'

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ request }) => {

 return json({ message: 'Hello, World!' })

 },

})

Responding with a status code

Options:

1. Pass status in Response constructor:

// routes/hello.ts

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ request, params }) => {

 const user = await findUser(params.id)

 if (!user) {

 return new Response('User not found', { status: 404 })

 }

 return json(user)

 },

})

2. Use setResponseStatus() helper:

// routes/hello.ts

import { setResponseStatus } from '@tanstack/react-start/server'

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ request, params }) => {

 const user = await findUser(params.id)

 if (!user) {

 setResponseStatus(404)

 return new Response('User not found')

 }

 return json(user)

50

 },

})

Setting headers in the response

Option 1: Pass headers object:

// routes/hello.ts

return new Response('Hello, World!', {

 headers: {

 'Content-Type': 'text/plain',

 },

})

Option 2: Use setHeaders() helper:

// routes/hello.ts

import { setHeaders } from '@tanstack/react-start/server'

export const ServerRoute = createServerFileRoute().methods({

 GET: async ({ request }) => {

 setHeaders({ 'Content-Type': 'text/plain' })

 return new Response('Hello, World!')

 },

})

Edit on GitHub

On this page

Server Routes and App Routes

File Route Conventions

Unique Route Paths

Escaped Matching

Pathless Layout Routes and Break-out Routes

Nested Directories vs File-names

Handling Server Route Requests

Defining a Server Route

Defining a Server Route Handler

Providing a handler function directly to the method

Providing a handler function via the method builder object

Handler Context

Dynamic Path Params

Wildcard/Splat Param

Handling requests with a body

Responding with JSON

Using the json() helper function

Responding with a status code

Setting headers in the response

Additional content available via links and navigation.

51

https://github.com/tanstack/router/edit/main/docs/start/framework/react/server-routes.md

SPA mode

Overview

Framework

React

On this page

What the heck is SPA mode?

Why use Start without SSR?

Benefits of SPA mode

Caveats of SPA mode

How does it work?

Configuring SPA mode

Use Necessary Redirects

Basic Redirects Example

Allowing Server Functions and Server Routes

Shell Mask Path

Prerendering Options

Customized rendering in SPA mode

Dynamic Data in your Shell

What the heck is SPA mode?

For applications that do not require SSR for either SEO, crawlers, or performance reasons, it may be desirable

to ship static HTML to your users containing the "shell" of your application (or even prerendered HTML for

specific routes) that contain the necessary html, head, and body tags to bootstrap your application only on the

client.

Why use Start without SSR?

No SSR doesn't mean giving up server-side features!

SPA modes actually pair very nicely with server-side features like server functions and/or server routes or even

other external APIs. It simply means that the initial document will not contain the fully rendered HTML of

your application until it has been rendered on the client using JavaScript.

Benefits of SPA mode

Easier to deploy - A CDN that can serve static assets is all you need.

Cheaper to host - CDNs are cheap compared to Lambda functions or long-running processes.

Client-side Only is simpler - No SSR means less to go wrong with hydration, rendering, and routing.

Caveats of SPA mode

Slower time to full content - Time to full content is longer since all JS must download and execute before

anything below the shell can be rendered.

52

Less SEO friendly - Robots, crawlers and link unfurlers may have a harder time indexing your application

unless they are configured to execute JS and your application can render within a reasonable amount of

time.

How does it work?

After enabling the SPA mode, running a Start build will have an additional prerendering step afterwards to

generate the shell. This is done by:

Prerendering your application's root route only

Where your application would normally render your matched routes, your router's configured pending

fallback component is rendered instead.

The resulting HTML is stored to a static HTML page called /_shell.html (configurable)

Default rewrites are configured to redirect all 404 requests to the SPA mode shell

Note

Other routes may also be prerendered and it is recommended to prerender as much as you can in SPA mode,

but this is not required for SPA mode to work.

Configuring SPA mode

To configure SPA mode, add the following options to your Start plugin:

// vite.config.ts

export default defineConfig({

 plugins: [

 TanStackStart({

 spa: {

 enabled: true,

 },

 }),

],

})

Use Necessary Redirects

Deploying a purely client-side SPA to a host or CDN often requires the use of redirects to ensure URLs are

properly rewritten to the SPA shell. The priorities are:

1. Serve static assets if they exist (e.g., /about.html)

2. Optionally route specific subpaths to dynamic server handlers (e.g., /api/**)

3. Rewrite all 404 requests to the SPA shell (e.g., /shell.html)

Basic Redirects Example

Using Netlify's _redirects file:

Catch all other 404 requests and rewrite to the SPA shell

/* /_shell.html 200

Allowing Server Functions and Server Routes

Example _redirects :

53

Route requests to server functions

/serverFn/* /_serverFn/:splat 200

Route requests to API routes

/api/* /api/:splat 200

Catch all other requests to shell

/* /_shell.html 200

Shell Mask Path

The default pathname used to generate the SPA shell is / . This is called the shell mask path. Since matched

routes are not included, it is mostly irrelevant, but it is configurable.

// vite.config.ts

export default defineConfig({

 plugins: [

 tanstackStart({

 spa: {

 maskPath: '/app',

 },

 }),

],

})

Note:

It's recommended to keep the default value / .

Prerendering Options

The prerender option configures the prerender behavior of the SPA shell, accepting options like in the

prerendering guide.

Default options:

outputPath : /_shell.html

crawlLinks : false

retryCount : 0

Override defaults:

// vite.config.ts

export default defineConfig({

 plugins: [

 TanStackStart({

 spa: {

 prerender: {

 outputPath: '/custom-shell',

 crawlLinks: true,

 retryCount: 3,

 },

 },

 }),

],

})

54

Customized rendering in SPA mode

You can customize the HTML output of the SPA shell to:

Provide generic head tags for SPA routes

Use a custom pending fallback component

Change shell's HTML, CSS, and JS

Use the isShell boolean on the router:

// src/routes/root.tsx

export default function Root() {

 const isShell = useRouter().isShell

 if (isShell) console.log('Rendering the shell!')

}

Note: After hydration, the router navigates to the first route and isShell becomes false, which may

produce flashes of unstyled content if not handled properly.

Dynamic Data in your Shell

The shell is prerendered using SSR, so any loaders or server functions on the Root Route run during prerender

and data is included.

Example:

// src/routes/__root.tsx

export const RootRoute = createRootRoute({

 loader: async () => {

 return {

 name: 'Tanner',

 }

 },

 component: Root,

})

export default function Root() {

 const { name } = useLoaderData()

 return (

 <html>

 <body>

 <h1>Hello, {name}!</h1>

 <Outlet />

 </body>

 </html>

)

}

Edit on GitHub

Edit this page on GitHub

55

https://github.com/tanstack/router/edit/main/docs/start/framework/react/spa-mode.md

Hosting

Introduction

Hosting is the process of deploying your application to the internet so that users can access it. This is a critical

part of any web development project, ensuring your application is available to the world. TanStack Start is

built on Vite, a powerful dev/build platform that allows us to make it possible to deploy your application to any

hosting provider.

What should I use?

TanStack Start is designed to work with any hosting provider, so if you already have a hosting provider in

mind, you can deploy your application there using the full-stack APIs provided by TanStack Start.

However, since hosting is one of the most crucial aspects of your application's performance, reliability, and

scalability, we highly recommend using our official hosting partner Netlify.

What is Netlify?

Netlify is a leading hosting platform that provides a fast, secure, and reliable environment for deploying your

web applications. With Netlify, you can deploy your TanStack Start application in just a few clicks and benefit

from features like a global edge network, automatic scaling, and seamless integrations with GitHub and

GitLab. Netlify is designed to make your development process as smooth as possible, from local development

to production deployment.

Learn more

To learn more about Netlify, visit the Netlify website

To sign up, visit the Netlify dashboard

Deployment

Warning

The page is still a work in progress. We'll keep updating this page with guides on deployment to different

hosting providers soon!

When deploying a TanStack Start application, the target value in the TanStack Start Vite plugin inside

vite.config.ts determines the deployment target. The deployment target can be set to one of the

following:

netlify: Deploy to Netlify

vercel: Deploy to Vercel

cloudflare-pages: Deploy to Cloudflare Pages

node-server: Deploy to a Node.js server

bun: Deploy to a Bun server

... and more to come!

Once you've chosen a deployment target, follow the guidelines below to deploy your application to your

preferred hosting provider.

56

https://www.netlify.com/?utm_source=tanstack
https://www.netlify.com/?utm_source=tanstack
https://www.netlify.com/?utm_source=tanstack
https://www.netlify.com/signup?utm_source=tanstack

Netlify

Set the target value to 'netlify' in the TanStack Start Vite plugin inside vite.config.ts :

// vite.config.ts

import { tanstackStart } from '@tanstack/react-start/plugin/vite'

import { defineConfig } from 'vite'

export default defineConfig({

 plugins: [tanstackStart({ target: 'netlify' })],

})

Deploy your application to Netlify using their one-click deployment process, and you're all set!

Vercel

Set the target value to 'vercel' in the TanStack Start Vite plugin inside vite.config.ts :

// vite.config.ts

import { tanstackStart } from '@tanstack/react-start/plugin/vite'

import { defineConfig } from 'vite'

export default defineConfig({

 plugins: [tanstackStart({ target: 'vercel' })],

})

Deploy to Vercel with their one-click process.

Cloudflare Pages

Deploying to Cloudflare Pages requires a few extra steps:

1. Install unenv

npm install unenv

2. Update app.config.ts

Set server.preset to 'cloudflare-pages' and server.unenv to cloudflare from unenv :

// app.config.ts

import { defineConfig } from '@tanstack/react-start/config'

import { cloudflare } from 'unenv'

export default defineConfig({

 server: {

 preset: 'cloudflare-pages',

 unenv: cloudflare,

 },

})

3. Add wrangler.toml file

wrangler.toml

name = "your-cloudflare-project-name"

pages_build_output_dir = "./dist"

compatibility_flags = ["nodejs_compat"]

compatibility_date = "2024-11-13"

57

Follow the deployment instructions for Cloudflare Pages.

Node.js

Set server.preset to 'node-server' in app.config.ts :

// app.config.ts

import { defineConfig } from '@tanstack/react-start/config'

export default defineConfig({

 server: {

 preset: 'node-server',

 },

})

// Or use the `--preset` flag during build:

// npm run build --preset node-server

Build and run your application:

npm run build

node .output/server/index.mjs

Bun

Note: Bun deployment guidelines work only with React 19; for React 18, see Node.js docs.

Upgrade react and react-dom to v19:

npm install react@rc react-dom@rc

Set server.preset to 'bun' :

// app.config.ts

import { defineConfig } from '@tanstack/react-start/config'

export default defineConfig({

 server: {

 preset: 'bun',

 },

})

// Or with CLI flag:

// npm run build --preset bun

Build and deploy:

bun run build

bun run .output/server/index.mjs

Start your Bun server:

bun run .output/server/index.mjs

Edit on GitHub

58

https://github.com/tanstack/router/edit/main/docs/start/framework/react/hosting.md

Authentication | TanStack Start
React Docs

TanStackStart v0

Auto

Framework

React

Version

Latest

Search...

+ K

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

react

Server Functions

react

Static Server Functions

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

Path Aliases

react

Tailwind CSS Integration

59

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

react

Migrate from Next.js

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

TanStackStart v0

Auto

Search...

+ K

Framework

React

Version

Latest

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

react

Server Functions

react

Static Server Functions

60

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

Path Aliases

react

Tailwind CSS Integration

react

Migrate from Next.js

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

On this page

What should I use?

What is Clerk?

Documentation & APIs

Authentication

61

Authentication is the process of verifying the identity of a user. This is a critical part of any application that

requires users to log in or access protected resources. TanStack Start provides the necessary full-stack APIs to

implement authentication in your application.

What should I use?

TanStack Start is **designed to work with any authentication provider**, so if you already have an

authentication provider or strategy in mind, you can use either find an existing example or implement your

own authentication logic using the full-stack APIs provided by TanStack Start.

That said, authentication is not something to be taken lightly. After much vetting, usage and reviewing on our

end, we highly recommend using Clerk for the best possible authentication experience. Clerk provides a full

suite of authentication APIs and UI components that make it easy to implement authentication in your

application and provide a seamless user experience.

What is Clerk?

Clerk is a modern authentication platform that provides a full suite of authentication APIs and UI components

to help you implement authentication in your application. Clerk is designed to be easy to use and provides a

seamless user experience. With Clerk, you can implement authentication in your application in minutes and

provide your users with a secure and reliable authentication experience.

To learn more about Clerk, visit the Clerk website

To sign up, visit the Clerk dashboard

To get started with Clerk, check out our official Start + Clerk examples!

Documentation & APIs

Documentation for implementing your own authentication logic with TanStack Start is coming soon! In the

meantime, you can check out any of the -auth prefixed examples for a starting point.

Edit on GitHub

On this page

What should I use?

What is Clerk?

Documentation & APIs

Hosting

Databases

Our Partners

Official Deployment Partner

TanStackForm

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit and

Svelte.

Learn More

TanStackConfig

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

Subscribe

62

https://clerk.dev/
https://go.clerk.com/wOwHtuJ
https://go.clerk.com/PrSDXti
https://github.com/TanStack/router/tree/main/examples/react/start-clerk-basic
https://github.com/TanStack/router/tree/main/examples/react
https://github.com/tanstack/router/edit/main/docs/start/framework/react/authentication.md

No spam. Unsubscribe at any time.

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

Subscribe

No spam. Unsubscribe at any time.

63

Databases | TanStack Start React
Docs

On this page

What should I use?

How simple is it to use a database with TanStack Start?

Recommended Database Providers

What is Neon?

What is Convex?

Documentation & APIs

What should I use?

TanStack Start is designed to work with any database provider, so if you already have a preferred database

system, you can integrate it with TanStack Start using the provided full-stack APIs. Whether you're working

with SQL, NoSQL, or other types of databases, TanStack Start can handle your needs.

How simple is it to use a database with TanStack
Start?

Using a database with TanStack Start is as simple as calling into your database's adapter/client/driver/service

from a TanStack Start server function or server route.

Here's an abstract example of how you might connect with a database and read/write to it:

import { createServerFn } from '@tanstack/react-start';

const db = createMyDatabaseClient();

export const getUser = createServerFn(async ({ ctx }) => {

 const user = await db.getUser(ctx.userId);

 return user;

});

export const createUser = createServerFn(async ({ ctx, input }) => {

 const user = await db.createUser(input);

 return user;

});

This is obviously contrived, but it demonstrates that you can use literally any database provider with TanStack

Start as long as you can call into it from a server function or server route.

Recommended Database Providers

While TanStack Start is designed to work with any database provider, we highly recommend considering one

of our vetted partner database providers Neon or Convex. They have been vetted by TanStack to match our

quality, openness, and performance standards and are both excellent choices for your database needs.

64

https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack

What is Neon?

Neon

Neon is a fully managed serverless PostgreSQL with a generous free tier. It separates storage and compute to

offer autoscaling, branching, and bottomless storage. With Neon, you get all the power and reliability of

PostgreSQL combined with modern cloud capabilities, making it perfect for TanStack Start applications.

Key features that make Neon stand out:

Serverless PostgreSQL that scales automatically

Database branching for development and testing

Built-in connection pooling

Point-in-time restore

Web-based SQL editor

Bottomless storage

To learn more about Neon, visit the Neon website.

To sign up, visit the Neon dashboard.

What is Convex?

Convex

Convex is a powerful, serverless database platform that simplifies the process of managing your application's

data. With Convex, you can build full-stack applications without the need to manually manage database

servers or write complex queries. Convex provides a real-time, scalable, and transactional data backend that

seamlessly integrates with TanStack Start, making it an excellent choice for modern web applications.

Convex's declarative data model and automatic conflict resolution ensure that your application remains

consistent and responsive, even at scale. It's designed to be developer-friendly, with a focus on simplicity and

productivity.

Features:

To learn more about Convex, visit the Convex website.

To sign up, visit the Convex dashboard.

Documentation & APIs

Documentation for integrating different databases with TanStack Start is coming soon! In the meantime, keep

an eye on our examples and guide to learn how to fully leverage your data layer across your TanStack Start

application.

Edit on GitHub

65

https://neon.tech/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://console.neon.tech/signup?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://dashboard.convex.dev/signup?utm_source=tanstack
https://github.com/tanstack/router/edit/main/docs/start/framework/react/databases.md

Observability

On this page

What should I use?

What is Sentry?

Documentation & APIs

What should I use?

TanStack Start is designed to work with any observability tool, so you can integrate your preferred solution

using the full-stack APIs provided by TanStack Start. Whether you need logging, tracing, or error monitoring,

TanStack Start is flexible enough to meet your observability needs.

However, for the best observability experience, we highly recommend using Sentry. Sentry is a powerful, full-

featured observability platform that provides real-time insights into your application's performance and error

tracking.

What is Sentry?

Sentry is a leading observability platform that helps developers monitor and fix crashes in real-time. With

Sentry, you can track errors, performance issues, and trends across your entire stack, from the frontend to the

backend. Sentry integrates seamlessly with TanStack Start, enabling you to identify and resolve issues faster,

maintain a high level of performance, and deliver a better experience to your users.

Sentry s̓ comprehensive dashboards, alerting capabilities, and in-depth error analysis tools make it an

invaluable resource for any development team looking to maintain control over their applications̓ health in

production.

To learn more about Sentry, visit the Sentry website

To sign up, visit the Sentry dashboard

Documentation & APIs

Documentation for integrating different observability tools with TanStack Start is coming soon! Stay tuned for

more examples and guides on how to use Sentry effectively with your TanStack Start projects.

Edit on GitHub

66

https://sentry.io/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack
https://sentry.io/signup?utm_source=tanstack
https://github.com/tanstack/router/edit/main/docs/start/framework/react/observability.md

Static Prerendering | TanStack Start
React Docs

On this page

Prerendering

Static Prerendering

Static prerendering is the process of generating static HTML files for your application. This can be useful for

either improving the performance of your application, as it allows you to serve pre-rendered HTML files to

users without having to generate them on the fly, or for deploying static sites to platforms that do not support

server-side rendering.

Prerendering

TanStack Start can prerender your application to static HTML files, which can then be served to users without

having to generate them on the fly. To prerender your application, you can add the server.prerender

option to your app.config.js file:

// app.config.js

import { defineConfig } from '@tanstack/react-start/config'

export default defineConfig({

 server: {

 prerender: {

 routes: ['/'],

 crawlLinks: true,

 },

 },

})

Edit on GitHub

Additional Links and Sections

Observability

Path Aliases

Our Partners

Official Deployment Partner

Clerk

Neon

Convex

Sentry

67

https://github.com/tanstack/router/edit/main/docs/start/framework/react/static-prerendering.md
https://netlify.com/?utm_source=tanstack
https://go.clerk.com/wOwHtuJ
https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack

TanStack Products

TanStack Form

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit,

and Svelte.

Learn More

TanStack Config

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday
to over 100,000 devs, for free.

Subscribe

No spam. Unsubscribe at any time.

68

Path Aliases

TanStack Start React Docs

Path Aliases

Path aliases are a useful feature of TypeScript that allows you to define a shortcut for a path that could be

distant in your project's directory structure. This can help you avoid long relative imports in your code and

make it easier to refactor your project's structure. This is especially useful for avoiding long relative imports in

your code.

By default, TanStack Start does not include path aliases. However, you can easily add them to your project by

updating your tsconfig.json file in the root of your project and adding the following configuration:

{

 "compilerOptions": {

 "baseUrl": ".",

 "paths": {

 "~/*": ["./src/*"]

 }

 }

}

In this example, we've defined the path alias ~/* that maps to the ./src/* directory. This means that you

can now import files from the src directory using the ~ prefix.

After updating your tsconfig.json file, you'll need to install the vite-tsconfig-paths plugin to

enable path aliases in your TanStack Start project. You can do this by running:

npm install -D vite-tsconfig-paths

Now, update your app.config.ts to include the following:

// app.config.ts

import { defineConfig } from '@tanstack/react-start/config'

import viteTsConfigPaths from 'vite-tsconfig-paths'

export default defineConfig({

 vite: {

 plugins: [

 // this is the plugin that enables path aliases

 viteTsConfigPaths({

 projects: ['./tsconfig.json'],

 }),

],

 },

})

Once this configuration is complete, you'll be able to import files using the path alias like so:

// app/routes/posts/$postId/edit.tsx

import { Input } from '~/components/ui/input'

69

// instead of

import { Input } from '../../../components/ui/input'

Edit on GitHub

70

https://github.com/tanstack/router/edit/main/docs/start/framework/react/path-aliases.md

TanStack Start React Docs

Navigation

TanStack

[**Start** v0](/start)

Auto

Framework

React

Version

Latest

Search...

+ K

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

[Overview](/start/latest/docs/framework/react/overview) - react

[Getting Started](/start/latest/docs/framework/react/getting-started) - react

[Quick Start](/start/latest/docs/framework/react/quick-start) - react

[Build from Scratch](/start/latest/docs/framework/react/build-from-scratch) - react

[Learn the Basics](/start/latest/docs/framework/react/learn-the-basics) - react

[Server Functions](/start/latest/docs/framework/react/server-functions) - react

[Static Server Functions](/start/latest/docs/framework/react/static-server-functions) - react

[Middleware](/start/latest/docs/framework/react/middleware) - react

[Server Routes](/start/latest/docs/framework/react/server-routes) - react

[SPA Mode](/start/latest/docs/framework/react/spa-mode) - react

[Hosting](/start/latest/docs/framework/react/hosting) - react

[Authentication](/start/latest/docs/framework/react/authentication) - react

[Databases](/start/latest/docs/framework/react/databases) - react

[Observability](/start/latest/docs/framework/react/observability) - react

[Static Prerendering](/start/latest/docs/framework/react/static-prerendering) - react

[Path Aliases](/start/latest/docs/framework/react/path-aliases) - react

[Tailwind CSS Integration](/start/latest/docs/framework/react/tailwind-integration) - react

[Migrate from Next.js](/start/latest/docs/framework/react/migrate-from-next-js) - react

71

https://github.com/tanstack/router
https://tlinz.com/discord

Examples

[Basic](/start/latest/docs/framework/react/examples/start-basic) - react

[Basic + React Query](/start/latest/docs/framework/react/examples/start-basic-react-query) - react

[Basic + Clerk Auth](/start/latest/docs/framework/react/examples/start-clerk-basic) - react

[Basic + DIY Auth](/start/latest/docs/framework/react/examples/start-basic-auth) - react

[Basic + Supabase Auth](/start/latest/docs/framework/react/examples/start-supabase-basic) - react

[Trellaux + Convex](/start/latest/docs/framework/react/examples/start-convex-trellaux) - react

[Trellaux](/start/latest/docs/framework/react/examples/start-trellaux) - react

[WorkOS](/start/latest/docs/framework/react/examples/start-workos) - react

[Material UI](/start/latest/docs/framework/react/examples/start-material-ui) - react

Tutorials

[Reading and Writing a File](/start/latest/docs/framework/react/reading-writing-file) - react

Error Page

404 Not Found
The page you are looking for does not exist.

Go back [Start Over](/)

Our Partners

Clerk{:target="_blank"}

Netlify{:target="_blank"}

Official Deployment Partner

Neon{:target="_blank"}

Convex{:target="_blank"}

Sentry{:target="_blank"}

TanStack Links

Form

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit, and

Svelte.

Learn More

Config

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

72

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

No spam. Unsubscribe at any time.

Subscribe

73

TanStack Start React Docs

TanStack Start v0

Auto

Framework

React

Version

Latest

Search...

+ K

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

react

Server Functions

react

Static Server Functions

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

Path Aliases

react

Tailwind CSS Integration

react

Migrate from Next.js

74

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

404 Not Found
The page you are looking for does not exist.

Go backStart Over

Home

Our Partners

Official Deployment Partner

TanStackForm

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit and

Svelte.

Learn More

TanStackConfig

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

Subscribe

No spam. Unsubscribe at any time.

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

Subscribe

75

No spam. Unsubscribe at any time.

76

React TanStack Start Basic Example
| TanStack Start Docs

Home

Overview

Framework: React

Version: Latest

Search and Menu

Search...

K

Menu:

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

Getting Started

Quick Start

Build from Scratch

Learn the Basics

Server Functions

Static Server Functions

Middleware

Server Routes

SPA Mode

Hosting

Authentication

Databases

Observability

Static Prerendering

Path Aliases

Tailwind CSS Integration

Migrate from Next.js

Examples

Basic

Basic + React Query

Basic + Clerk Auth

Basic + DIY Auth

77

https://github.com/tanstack/router
https://tlinz.com/discord

Basic + Supabase Auth

Trellaux + Convex

Trellaux

WorkOS

Material UI

Tutorials

Reading and Writing a File

React Example: Basic

Github

CodeSandbox

Code Explorer | Code | Interactive Sandbox

Files Overview

.vscode

src

main.tsx

posts.lazy.tsx

posts.ts

styles.css

.gitignore

README.md

index.html

package.json

postcss.config.mjs

tailwind.config.mjs

tsconfig.json

vite.config.js

import ReactDOM from 'react-dom/client'

import {

 ErrorComponent,

 Link,

 Outlet,

 RouterProvider,

 createRootRoute,

 createRoute,

 createRouter,

} from '@tanstack/react-router'

import { TanStackRouterDevtools } from '@tanstack/react-router-devtools'

import { NotFoundError, fetchPost, fetchPosts } from './posts'

import type { ErrorComponentProps } from '@tanstack/react-router'

import './styles.css'

const rootRoute = createRootRoute({

 component: RootComponent,

 notFoundComponent: () => {

 return (

 <div>

78

https://github.com/tanstack/router/tree/main/examples/react/basic
https://codesandbox.io/p/devbox/github/tanstack/router/tree/main/examples/react/basic?embed=1&theme=dark&file=src/routes/__root.tsx

 <p>This is the notFoundComponent configured on root route</p>

 <Link to="/">Start Over</Link>

 </div>

)

 },

})

function RootComponent() {

 return (

 <>

 <div className="p-2 flex gap-2 text-lg border-b">

 <Link

 to="/"

 activeProps={{

 className: 'font-bold',

 }}

 activeOptions={{ exact: true }}

 >

 Home

 </Link>{' '}

 <Link

 to="/posts"

 activeProps={{

 className: 'font-bold',

 }}

 >

 Posts

 </Link>{' '}

 <Link

 to="/route-a"

 activeProps={{

 className: 'font-bold',

 }}

 >

 Pathless Layout

 </Link>{' '}

 <Link

 // @ts-expect-error

 to="/this-route-does-not-exist"

 activeProps={{

 className: 'font-bold',

 }}

 >

 This Route Does Not Exist

 </Link>

 </div>

 <Outlet />

 <TanStackRouterDevtools position="bottom-right" />

 </>

)

}

const indexRoute = createRoute({

 getParentRoute: () => rootRoute,

 path: '/',

 component: IndexComponent,

79

})

function IndexComponent() {

 return (

 <div className="p-2">

 <h3>Welcome Home!</h3>

 </div>

)

}

export const postsLayoutRoute = createRoute({

 getParentRoute: () => rootRoute,

 path: 'posts',

 loader: () => fetchPosts(),

}).lazy(() => import('./posts.lazy').then((d) => d.Route))

const postsIndexRoute = createRoute({

 getParentRoute: () => postsLayoutRoute,

 path: '/',

 component: PostsIndexComponent,

})

function PostsIndexComponent() {

 return <div>Select a post.</div>

}

const postRoute = createRoute({

 getParentRoute: () => postsLayoutRoute,

 path: '$postId',

 errorComponent: PostErrorComponent,

 loader: ({ params }) => fetchPost(params.postId),

 component: PostComponent,

})

function PostErrorComponent({ error }: ErrorComponentProps) {

 if (error instanceof NotFoundError) {

 return <div>{error.message}</div>

 }

 return <ErrorComponent error={error} />

}

function PostComponent() {

 const post = postRoute.useLoaderData()

 return (

 <div className="space-y-2">

 <h4 className="text-xl font-bold">{post.title}</h4>

 <hr className="opacity-20" />

 <div className="text-sm">{post.body}</div>

 </div>

)

}

const pathlessLayoutRoute = createRoute({

80

 getParentRoute: () => rootRoute,

 id: '_pathlessLayout',

 component: PathlessLayoutComponent,

})

function PathlessLayoutComponent() {

 return (

 <div className="p-2">

 <div className="border-b">I'm a pathless layout</div>

 <div>

 <Outlet />

 </div>

 </div>

)

}

const nestedPathlessLayout2Route = createRoute({

 getParentRoute: () => pathlessLayoutRoute,

 id: '_nestedPathlessLayout',

 component: PathlessLayout2Component,

})

function PathlessLayout2Component() {

 return (

 <div>

 <div>I'm a nested pathless layout</div>

 <div className="flex gap-2 border-b">

 <Link

 to="/route-a"

 activeProps={{

 className: 'font-bold',

 }}

 >

 Go to Route A

 </Link>

 <Link

 to="/route-b"

 activeProps={{

 className: 'font-bold',

 }}

 >

 Go to Route B

 </Link>

 </div>

 <div>

 <Outlet />

 </div>

 </div>

)

}

const pathlessLayoutARoute = createRoute({

 getParentRoute: () => nestedPathlessLayout2Route,

 path: '/route-a',

 component: PathlessLayoutAComponent,

81

})

function PathlessLayoutAComponent() {

 return <div>I'm route A!</div>

}

const pathlessLayoutBRoute = createRoute({

 getParentRoute: () => nestedPathlessLayout2Route,

 path: '/route-b',

 component: PathlessLayoutBComponent,

})

function PathlessLayoutBComponent() {

 return <div>I'm route B!</div>

}

const routeTree = rootRoute.addChildren([

 postsLayoutRoute.addChildren([postRoute, postsIndexRoute]),

 pathlessLayoutRoute.addChildren([

 nestedPathlessLayout2Route.addChildren([pathlessLayoutARoute, pathlessLayoutBRoute

]),

 indexRoute,

])

// Set up a Router instance

const router = createRouter({

 routeTree,

 defaultPreload: 'intent',

 defaultStaleTime: 5000,

 scrollRestoration: true,

})

// Register things for typesafety

declare module '@tanstack/react-router' {

 interface Register {

 router: typeof router

 }

}

const rootElement = document.getElementById('app')!

if (!rootElement.innerHTML) {

 const root = ReactDOM.createRoot(rootElement)

 root.render(<RouterProvider router={router} />)

}

82

React TanStack Start Basic React
Query Example | TanStack Start
Docs

Navigation

Main Content

React Example: Basic React Query

Github

CodeSandbox

Code Explorer | Interactive Sandbox

.vscode

src

 main.tsx

 posts.lazy.tsx

 posts.ts

 styles.css

.gitignore

README.md

index.html

package.json

postcss.config.mjs

tailwind.config.mjs

tsconfig.json

vite.config.js

Example Code

import React from 'react'

import ReactDOM from 'react-dom/client'

import {

 ErrorComponent,

 Link,

 Outlet,

 RouterProvider,

 createRootRouteWithContext,

 createRoute,

 createRouter,

 useRouter,

} from '@tanstack/react-router'

import { TanStackRouterDevtools } from '@tanstack/react-router-devtools'

import { ReactQueryDevtools } from '@tanstack/react-query-devtools'

83

https://github.com/tanstack/router/tree/main/examples/react/basic-react-query
https://codesandbox.io/p/devbox/github/tanstack/router/tree/main/examples/react/basic-react-query?embed=1&theme=dark&file=src/routes/__root.tsx

import {

 QueryClient,

 QueryClientProvider,

 useQueryErrorResetBoundary,

 useSuspenseQuery,

} from '@tanstack/react-query'

import { NotFoundError, postQueryOptions, postsQueryOptions } from './posts'

import type { ErrorComponentProps } from '@tanstack/react-router'

import './styles.css'

const rootRoute = createRootRouteWithContext<{ queryClient: QueryClient }>()({

 component: RootComponent,

 notFoundComponent: () => (

 <div>

 <p>This is the notFoundComponent configured on root route</p>

 <Link to="/">Start Over</Link>

 </div>

),

})

function RootComponent() {

 return (

 <>

 <div className="p-2 flex gap-2 text-lg">

 <Link to="/" activeProps={{ className: 'font-bold' }} activeOptions={{ exact:

 <Link to="/posts" activeProps={{ className: 'font-bold' }}>Posts</Link>

 <Link to="/route-a" activeProps={{ className: 'font-bold' }}>Pathless Layout</

 {/* @ts-expect-error */}

 <Link to="/this-route-does-not-exist" activeProps={{ className: 'font-bold' }}

 </div>

 <hr />

 <Outlet />

 <ReactQueryDevtools buttonPosition="top-right" />

 <TanStackRouterDevtools position="bottom-right" />

 </>

)

}

const indexRoute = createRoute({

 getParentRoute: () => rootRoute,

 path: '/',

 component: IndexRouteComponent,

})

function IndexRouteComponent() {

 return (

 <div className="p-2">

 <h3>Welcome Home!</h3>

 </div>

)

}

const postsLayoutRoute = createRoute({

 getParentRoute: () => rootRoute,

 path: 'posts',

84

 loader: ({ context: { queryClient } }) =>

 queryClient.ensureQueryData(postsQueryOptions),

}).lazy(() => import('./posts.lazy').then(d => d.Route))

const postsIndexRoute = createRoute({

 getParentRoute: () => postsLayoutRoute,

 path: '/',

 component: PostsIndexRouteComponent,

})

function PostsIndexRouteComponent() {

 return <div>Select a post.</div>

}

const postRoute = createRoute({

 getParentRoute: () => postsLayoutRoute,

 path: '$postId',

 errorComponent: PostErrorComponent,

 loader: ({ context: { queryClient }, params: { postId } }) =>

 queryClient.ensureQueryData(postQueryOptions(postId)),

 component: PostRouteComponent,

})

function PostErrorComponent({ error }: ErrorComponentProps) {

 const router = useRouter()

 if (error instanceof NotFoundError) {

 return <div>{error.message}</div>

 }

 const queryErrorResetBoundary = useQueryErrorResetBoundary()

 React.useEffect(() => {

 queryErrorResetBoundary.reset()

 }, [queryErrorResetBoundary])

 return (

 <div>

 <button

 onClick={() => {

 router.invalidate()

 }}

 >

 retry

 </button>

 <ErrorComponent error={error} />

 </div>

)

}

function PostRouteComponent() {

 const { postId } = postRoute.useParams()

 const postQuery = useSuspenseQuery(postQueryOptions(postId))

 const post = postQuery.data

 return (

 <div className="space-y-2">

85

 <h4 className="text-xl font-bold underline">{post.title}</h4>

 <div className="text-sm">{post.body}</div>

 </div>

)

}

const pathlessLayoutRoute = createRoute({

 getParentRoute: () => rootRoute,

 id: '_pathlessLayout',

 component: PathlessLayoutComponent,

})

function PathlessLayoutComponent() {

 return (

 <div className="p-2">

 <div className="border-b">I'm a pathless layout</div>

 <div>

 <Outlet />

 </div>

 </div>

)

}

const nestedPathlessLayoutRoute = createRoute({

 getParentRoute: () => pathlessLayoutRoute,

 id: '_nestedPathlessLayout',

 component: Layout2Component,

})

function Layout2Component() {

 return (

 <div>

 <div>I'm a nested pathless layout</div>

 <div className="flex gap-2 border-b">

 <Link to="/route-a" activeProps={{ className: 'font-bold' }}>Go to route A</Li

 <Link to="/route-b" activeProps={{ className: 'font-bold' }}>Go to route B</Li

 </div>

 <div>

 <Outlet />

 </div>

 </div>

)

}

const pathlessLayoutARoute = createRoute({

 getParentRoute: () => nestedPathlessLayoutRoute,

 path: '/route-a',

 component: PathlessLayoutAComponent,

})

function PathlessLayoutAComponent() {

 return <div>I'm layout A!</div>

}

const pathlessLayoutBRoute = createRoute({

86

 getParentRoute: () => nestedPathlessLayoutRoute,

 path: '/route-b',

 component: PathlessLayoutBComponent,

})

function PathlessLayoutBComponent() {

 return <div>I'm layout B!</div>

}

const routeTree = rootRoute.addChildren([

 postsLayoutRoute.addChildren([postRoute, postsIndexRoute]),

 pathlessLayoutRoute.addChildren([

 nestedPathlessLayoutRoute.addChildren([pathlessLayoutARoute, pathlessLayoutBRoute]

]),

 indexRoute,

])

const queryClient = new QueryClient()

// Set up a Router instance

const router = createRouter({

 routeTree,

 defaultPreload: 'intent',

 // Since we're using React Query, we don't want loader calls to ever be stale

 // This will ensure that the loader is always called when the route is preloaded or

 defaultPreloadStaleTime: 0,

 scrollRestoration: true,

 context: {

 queryClient,

 },

})

// Register things for typesafety

declare module '@tanstack/react-router' {

 interface Register {

 router: typeof router

 }

}

const rootElement = document.getElementById('app')!

if (!rootElement.innerHTML) {

 const root = ReactDOM.createRoot(rootElement)

 root.render(

 <QueryClientProvider client={queryClient}>

 <RouterProvider router={router} />

 </QueryClientProvider>

)

}

(Note: The second large code block in the original was a duplicate, so it's omitted here for brevity.)

87

React TanStack Start Basic Clerk
Auth Example | TanStack Start Docs

Navigation

TanStack | Start v0

Auto

Framework

React

Version: Latest

Search...

K

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview (react)

Getting Started (react)

Quick Start (react)

Build from Scratch (react)

Learn the Basics (react)

Server Functions (react)

Static Server Functions (react)

Middleware (react)

Server Routes (react)

SPA Mode (react)

Hosting (react)

Authentication (react)

Databases (react)

Observability (react)

Static Prerendering (react)

Path Aliases (react)

Tailwind CSS Integration (react)

Migrate from Next.js (react)

Examples

88

https://github.com/tanstack/router
https://tlinz.com/discord

Basic (react)

Basic + React Query (react)

Basic + Clerk Auth (react)

Basic + DIY Auth (react)

Basic + Supabase Auth (react)

Trellaux + Convex (react)

Trellaux (react)

WorkOS (react)

Material UI (react)

Tutorials

Reading and Writing a File (react)

Error Message

Something went wrong!
Hide Error

Failed to fetch repo contents for tanstack/router/main/examples/react/basic-clerk-auth

Try Again | Go Back

Navigation (Repeated)

Home

Our Partners

Official Deployment Partner

Netlify

Neon

Convex

Sentry

More Links

TanStack Form

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit, and

Svelte.

Learn More

TanStack Config

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

89

https://go.clerk.com/wOwHtuJ
https://netlify.com/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack

Subscription Section

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

No spam. Unsubscribe at any time.

Subscribe

(Repeated Subscription Section)

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

No spam. Unsubscribe at any time.

Subscribe

90

React TanStack Start Basic DIY Auth
Example | TanStack Start Docs

Navigation Header

TanStack

Start v0

Auto

Filters and Search

Search...

K

Framework Information

Framework: React

Version: Latest

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview - react

Getting Started - react

Quick Start - react

Build from Scratch - react

Learn the Basics - react

Server Functions - react

Static Server Functions - react

Middleware - react

Server Routes - react

SPA Mode - react

Hosting - react

Authentication - react

Databases - react

Observability - react

Static Prerendering - react

91

https://github.com/tanstack/router
https://tlinz.com/discord

Path Aliases - react

Tailwind CSS Integration - react

Migrate from Next.js - react

Examples

Basic - react

Basic + React Query - react

Basic + Clerk Auth - react

Basic + DIY Auth - react

Basic + Supabase Auth - react

Trellaux + Convex - react

Trellaux - react

WorkOS - react

Material UI - react

Tutorials

Reading and Writing a File - react

Error Message

Something went wrong!

Hide Error

Failed to fetch repo contents for tanstack/router/main/examples/react/basic-diy-auth:

Retry options

Try Again

Go Back

Navigation Footer

Home

Partners and Resources

Our Partners

Clerk (opens in new tab)

Netlify (opens in new tab)

Neon (opens in new tab)

Convex (opens in new tab)

Sentry (opens in new tab)

92

https://go.clerk.com/wOwHtuJ
https://netlify.com/?utm_source=tanstack
https://neon.tech/?utm_source=tanstack
https://convex.dev/?utm_source=tanstack
https://sentry.io/?utm_source=tanstack

Create a TanStack Form

TanStack Form

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit, and

Svelte.

Learn More

Create a TanStack Config

TanStack Config

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

Subscribe to Bytes

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

No spam. Unsubscribe at any time.

Subscribe

93

React TanStack Start Basic
Supabase Auth Example | TanStack
Start Docs

TanStack Start v0

Auto

Framework

React

Version

Latest

Search...

+ K

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

react

Server Functions

react

Static Server Functions

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

94

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

Path Aliases

react

Tailwind CSS Integration

react

Migrate from Next.js

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

TanStack Start v0

Auto

Search...

+ K

Framework

React

Version

Latest

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

95

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

react

Server Functions

react

Static Server Functions

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

Path Aliases

react

Tailwind CSS Integration

react

Migrate from Next.js

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

Something went wrong! Hide Error

Failed to fetch repo contents for tanstack/router/main/examples/react/basic-supabase-a

Try Again Go Back

Home

96

Our Partners

Official Deployment Partner

TanStackForm

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit and

Svelte.

Learn More

TanStackConfig

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

Subscribe

No spam. Unsubscribe at any time.

97

React TanStack Start Trellaux
Convex Example | TanStack Start
Docs

TanStackStart v0

Auto

Framework

React

Version

Latest

Search...

+ K

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

react

Server Functions

react

Static Server Functions

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

98

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

Path Aliases

react

Tailwind CSS Integration

react

Migrate from Next.js

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

TanStackStart v0

Auto

Search...

+ K

Framework

React

Version

Latest

Menu

Home

Frameworks

Contributors

GitHub

Discord

Getting Started

Overview

react

Getting Started

react

Quick Start

react

Build from Scratch

react

Learn the Basics

react

99

https://github.com/tanstack/router
https://github.com/tanstack/router
https://github.com/tanstack/router
https://tlinz.com/discord
https://tlinz.com/discord
https://tlinz.com/discord

Server Functions

react

Static Server Functions

react

Middleware

react

Server Routes

react

SPA Mode

react

Hosting

react

Authentication

react

Databases

react

Observability

react

Static Prerendering

react

Path Aliases

react

Tailwind CSS Integration

react

Migrate from Next.js

react

Examples

Basic

react

Basic + React Query

react

Basic + Clerk Auth

react

Basic + DIY Auth

react

Basic + Supabase Auth

react

Trellaux + Convex

react

Trellaux

react

WorkOS

react

Material UI

react

Tutorials

Reading and Writing a File

react

Something went wrong! Hide Error

Failed to fetch repo contents for tanstack/router/main/examples/react/trellaux-

convex: Status is Not Found - 404

Try Again Go Back

100

Home

Our Partners

Official Deployment Partner

TanStackForm

Headless, performant, and type-safe form state management for TS/JS, React, Vue, Angular, Solid, Lit and

Svelte.

Learn More

TanStackConfig

The build and publish utilities used by all of our projects. Use it if you dare!

Learn More

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

Subscribe

No spam. Unsubscribe at *any* time.

Subscribe to Bytes

Your weekly dose of JavaScript news. Delivered every Monday to over 100,000 devs, for free.

Subscribe

No spam. Unsubscribe at *any* time.

101

