
Mastering the Rust Programming
Language

This book provides a comprehensive guide to the Rust programming language, covering all essential topics

from installation to advanced programming concepts. It is suitable for both beginners and experienced

programmers looking to deepen their understanding of Rust, its unique features, and best practices.
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The Rust Programming Language

Foreword

It wasnʼt always so clear, but the Rust programming language is fundamentally about empowerment: no matter

what kind of code you are writing now, Rust empowers you to reach farther, to program with confidence in a

wider variety of domains than you did before.

Take, for example, “systems-level” work that deals with low-level details of memory management, data

representation, and concurrency. Traditionally, this realm of programming is seen as arcane, accessible only

to a select few who have devoted the necessary years learning to avoid its infamous pitfalls. And even those

who practice it do so with caution, lest their code be open to exploits, crashes, or corruption.

Rust breaks down these barriers by eliminating the old pitfalls and providing a friendly, polished set of tools to

help you along the way. Programmers who need to “dip down” into lower-level control can do so with Rust,

without taking on the customary risk of crashes or security holes, and without having to learn the fine points

of a fickle toolchain. Better yet, the language is designed to guide you naturally towards reliable code that is

efficient in terms of speed and memory usage.

Programmers who are already working with low-level code can use Rust to raise their ambitions. For example,

introducing parallelism in Rust is a relatively low-risk operation: the compiler will catch the classical mistakes

for you. And you can tackle more aggressive optimizations in your code with the confidence that you wonʼt

accidentally introduce crashes or vulnerabilities.

But Rust isnʼt limited to low-level systems programming. It s̓ expressive and ergonomic enough to make CLI

apps, web servers, and many other kinds of code quite pleasant to write — youʼll find simple examples of both

later in the book. Working with Rust allows you to build skills that transfer from one domain to another; you

can learn Rust by writing a web app, then apply those same skills to target your Raspberry Pi.

This book fully embraces the potential of Rust to empower its users. It s̓ a friendly and approachable text

intended to help you level up not just your knowledge of Rust, but also your reach and confidence as a

programmer in general. So dive in, get ready to learn—and welcome to the Rust community!

— Nicholas Matsakis and Aaron Turon
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Not Found
Looks like youʼve taken a wrong turn.

Some things that might be helpful to you though:

§ Search

From the Standard Library

From DuckDuckGo

§ Reference

The Rust official site

The Rust reference

§ Docs

The standard library

Copyright © 2011 The Rust Project Developers. Licensed under the Apache License, Version 2.0 or the MIT

license, at your option.

This file may not be copied, modified, or distributed except according to those terms.
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Hello, Cargo! - The Rust Programming Language

Introduction to Cargo

Cargo is Rust s̓ build system and package manager. Most Rustaceans use this tool to manage their Rust projects

because Cargo handles a lot of tasks for you, such as building your code, downloading the libraries your code

depends on, and building those libraries. (We call the libraries that your code needs dependencies.)

The simplest Rust programs, like the one weʼve written so far, donʼt have any dependencies. If we had built the

“Hello, world!” project with Cargo, it would only use the part of Cargo that handles building your code. As you

write more complex Rust programs, youʼll add dependencies, and if you start a project using Cargo, adding

dependencies will be much easier to do.

Because the vast majority of Rust projects use Cargo, the rest of this book assumes that youʼre using Cargo too.

Cargo comes installed with Rust if you used the official installers discussed in the “Installation” section. If you

installed Rust through some other means, check whether Cargo is installed by entering the following in your

terminal:

$ cargo --version

If you see a version number, you have it! If you see an error, such as command not found , look at the

documentation for your method of installation to determine how to install Cargo separately.

Creating a Project with Cargo

Let s̓ create a new project using Cargo and look at how it differs from our original “Hello, world!” project.

Navigate back to your projects directory (or wherever you decided to store your code). Then, on any operating

system, run the following:

$ cargo new hello_cargo

$ cd hello_cargo

The first command creates a new directory and project called hello_cargo. Weʼve named our project hello_cargo,

and Cargo creates its files in a directory of the same name.

Go into the hello_cargo directory and list the files. Youʼll see that Cargo has generated two files and one

directory for us: a Cargo.toml  file and a src  directory with a main.rs  file inside.

It has also initialized a new Git repository along with a .gitignore  file. Git files wonʼt be generated if you

run cargo new  within an existing Git repository; you can override this behavior by using cargo new --

vcs=git .
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Note: Git is a common version control system. You can change cargo new  to use a different

version control system or no version control system by using the --vcs  flag. Run cargo new

--help  to see the available options.

Open Cargo.toml  in your text editor of choice. It should look similar to the code in Listing 1-2.

Filename: Cargo.toml

[package]

name = "hello_cargo"

version = "0.1.0"

edition = "2024"

[dependencies]

This file is in the TOML (Tomʼs Obvious, Minimal Language) format, which is Cargo s̓ configuration format.

The first line, [package] , is a section heading that indicates that the following statements are configuring a

package. As we add more information to this file, weʼll add other sections.

The next three lines set the configuration information Cargo needs to compile your program: the name, the

version, and the edition of Rust to use. Weʼll talk about the edition  key in Appendix E.

The last line, [dependencies] , is the start of a section for you to list any of your project s̓ dependencies. In

Rust, packages of code are referred to as crates. We wonʼt need any other crates for this project, but we will in

the first project in Chapter 2, so weʼll use this dependencies section then.

Now open src/main.rs  and take a look:

Filename: src/main.rs

fn main() {

    println!("Hello, world!");

}

Cargo has generated a “Hello, world!” program for you, just like the one we wrote in Listing 1-1! So far, the

differences between our project and the project Cargo generated are that Cargo placed the code in the src

directory and we have a Cargo.toml  configuration file in the top directory.

Cargo expects your source files to live inside the src  directory. The top-level project directory is just for

README files, license information, configuration files, and anything else not related to your code. Using

Cargo helps you organize your projects. There s̓ a place for everything, and everything is in its place.

If you started a project that doesnʼt use Cargo, as we did with the “Hello, world!” project, you can convert it to a

project that does use Cargo. Move the project code into the src  directory and create an appropriate

Cargo.toml  file. One easy way to get that Cargo.toml  file is to run cargo init , which will create it

for you automatically.

Building and Running a Cargo Project

Now let s̓ look at what s̓ different when we build and run the “Hello, world!” program with Cargo! From your

hello_cargo directory, build your project by entering the following command:

$ cargo build

   Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)

    Finished dev [unoptimized + debuginfo] target(s) in 2.85 secs
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This command creates an executable file in target/debug/hello_cargo  (or

target\debug\hello_cargo.exe  on Windows) rather than in your current directory. Because the

default build is a debug build, Cargo puts the binary in a directory named debug . You can run the

executable with this command:

$ ./target/debug/hello_cargo # or .\target\debug\hello_cargo.exe on Windows

Hello, world!

If all goes well, Hello, world!  should print to the terminal. Running cargo build  for the first time

also causes Cargo to create a new file at the top level: Cargo.lock . This file keeps track of the exact

versions of dependencies in your project. This project doesnʼt have dependencies, so the file is a bit sparse.

You wonʼt ever need to change this file manually; Cargo manages its contents for you.

We just built a project with cargo build  and ran it with ./target/debug/hello_cargo , but we can

also use cargo run  to compile the code and then run the resultant executable all in one command:

$ cargo run

    Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs

     Running `target/debug/hello_cargo`

Hello, world!

Using cargo run  is more convenient than having to remember to run cargo build  and then use the

whole path to the binary, so most developers use cargo run .

Notice that this time we didnʼt see output indicating that Cargo was compiling hello_cargo . Cargo figured

out that the files hadnʼt changed, so it didnʼt rebuild but just ran the binary. If you had modified your source

code, Cargo would have rebuilt the project before running it, and you would have seen this output:

$ cargo run

   Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)

    Finished dev [unoptimized + debuginfo] target(s) in 0.33 secs

     Running `target/debug/hello_cargo`

Hello, world!

Cargo also provides a command called cargo check . This command quickly checks your code to make

sure it compiles but doesnʼt produce an executable:

$ cargo check

   Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)

    Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs

Why would you not want an executable? Often, cargo check  is much faster than cargo build  because

it skips the step of producing an executable. If youʼre continually checking your work while writing the code,

using cargo check  will speed up the process of letting you know if your project is still compiling! As such,

many Rustaceans run cargo check  periodically as they write their program to make sure it compiles.

Then they run cargo build  when theyʼre ready to use the executable.

Let s̓ recap what weʼve learned so far about Cargo:

We can create a project using cargo new .

We can build a project using cargo build .

We can build and run a project in one step using cargo run .

We can build a project without producing a binary to check for errors using cargo check .

Instead of saving the result of the build in the same directory as our code, Cargo stores it in the

target/debug  directory.

An additional advantage of using Cargo is that the commands are the same no matter which operating system

youʼre working on. So, at this point, weʼll no longer provide specific instructions for Linux and macOS versus

Windows.
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Building for Release

When your project is finally ready for release, you can use cargo build --release  to compile it with

optimizations. This command will create an executable in target/release  instead of target/debug .

The optimizations make your Rust code run faster, but turning them on lengthens the time it takes for your

program to compile. This is why there are two different profiles: one for development, when you want to

rebuild quickly and often, and another for building the final program youʼll give to a user that wonʼt be rebuilt

repeatedly and that will run as fast as possible. If youʼre benchmarking your code s̓ running time, be sure to

run cargo build --release  and benchmark with the executable in target/release .

Cargo as Convention

With simple projects, Cargo doesnʼt provide a lot of value over just using rustc , but it will prove its worth as

your programs become more intricate. Once programs grow to multiple files or need a dependency, it s̓ much

easier to let Cargo coordinate the build.

Even though the hello_cargo  project is simple, it now uses much of the real tooling youʼll use in the rest

of your Rust career. To work on any existing projects, you can use the following commands to check out the

code using Git, change to that project s̓ directory, and build:

$ git clone example.org/someproject

$ cd someproject

$ cargo build

For more information about Cargo, check out its documentation.

Summary

Youʼre already off to a great start on your Rust journey! In this chapter, youʼve learned how to:

Install the latest stable version of Rust using rustup .

Update to a newer Rust version.

Open locally installed documentation.

Write and run a “Hello, world!” program using rustc  directly.

Create and run a new project using the conventions of Cargo.

This is a great time to build a more substantial program to get used to reading and writing Rust code. So, in

Chapter 2, weʼll build a guessing game program. If you would rather start by learning how common

programming concepts work in Rust, see Chapter 3 and then return to Chapter 2.
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Programming a Guessing Game -
The Rust Programming Language

Introduction

Let s̓ jump into Rust by working through a hands-on project together! This chapter introduces you to a few

common Rust concepts by showing you how to use them in a real program. Youʼll learn about let , match ,

methods, associated functions, external crates, and more! In the following chapters, weʼll explore these ideas

in more detail. In this chapter, youʼll just practice the fundamentals.

Weʼll implement a classic beginner programming problem: a guessing game. Here s̓ how it works: the program

will generate a random integer between 1 and 100. It will then prompt the player to enter a guess. After a guess

is entered, the program will indicate whether the guess is too low or too high. If the guess is correct, the game

will print a congratulatory message and exit.

Setting Up a New Project

To set up a new project, go to the projects directory that you created in Chapter 1 and make a new project using

Cargo, like so:

$ cargo new guessing_game

$ cd guessing_game

The first command, cargo new , takes the name of the project ( guessing_game ) as the first argument.

The second command changes to the new project s̓ directory.

Look at the generated Cargo.toml  file:

[package]

name = "guessing_game"

version = "0.1.0"

edition = "2024"

[dependencies]

As you saw in Chapter 1, cargo new  generates a “Hello, world!” program for you. Check out the

src/main.rs  file:

fn main() {

    println!("Hello, world!");

}

Now let s̓ compile this “Hello, world!” program and run it in the same step using the cargo run  command:

$ cargo run

   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

    Finished dev [unoptimized + debuginfo] in 0.08s

     Running `target/debug/guessing_game`

Hello, world!

The run  command comes in handy when you need to rapidly iterate on a project, as weʼll do in this game,

quickly testing each iteration before moving on to the next one.

12



Reopen the src/main.rs  file. Youʼll be writing all the code in this file.

Processing a Guess

The first part of the guessing game program will ask for user input, process that input, and check that the

input is in the expected form. To start, weʼll allow the player to input a guess. Enter the code in Listing 2-1 into

src/main.rs .

use std::io;

fn main() {

    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

This code contains a lot of information, so let s̓ go over it line by line. To obtain user input and then print the

result as output, we need to bring the io  input/output library into scope. The io  library comes from the

standard library, known as std .

use std::io;

fn main() {

    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

By default, Rust has a set of items defined in the standard library that it brings into the scope of every

program. This set is called the prelude, and you can see everything in it in the standard library documentation.

If a type you want to use isnʼt in the prelude, you have to bring that type into scope explicitly with a use

statement. Using the std::io  library provides you with a number of useful features, including the ability to

accept user input.

As you saw in Chapter 1, the main  function is the entry point into the program:

use std::io;

fn main() {

    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)
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        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

The fn  syntax declares a new function; the parentheses, () , indicate there are no parameters; and the

curly bracket, { , starts the body of the function.

As you also learned in Chapter 1, println!  is a macro that prints a string to the screen:

use std::io;

fn main() {

    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

This code is printing a prompt stating what the game is and requesting input from the user.

Storing Values with Variables

Next, weʼll create a variable to store the user input, like this:

use std::io;

fn main() {

    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

Now the program is getting interesting! There s̓ a lot going on in this little line. We use the let  statement to

create the variable. Here s̓ another example:

let apples = 5;

This line creates a new variable named apples  and binds it to the value 5. In Rust, variables are immutable

by default, meaning once we give the variable a value, the value wonʼt change. Weʼll be discussing this concept

in detail in the “Variables and Mutability” section in Chapter 3. To make a variable mutable, we add mut

before the variable name:
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let apples = 5; // immutable

let mut bananas = 5; // mutable

Note: The //  syntax starts a comment that continues until the end of the line. Rust ignores

everything in comments. Weʼll discuss comments in more detail in Chapter 3.

Returning to the guessing game program, you now know that let mut guess  will introduce a mutable

variable named guess . The equal sign ( = ) tells Rust we want to bind something to the variable now. On

the right of the equal sign is the value that guess  is bound to, which is the result of calling String::new ,

a function that returns a new instance of a String . String  is a string type provided by the standard

library that is a growable, UTF-8 encoded bit of text.

The ::  syntax in the ::new  line indicates that new  is an associated function of the String  type. An

associated function is a function that s̓ implemented on a type. This new  function creates a new, empty string.

Youʼll find a new  function on many types because it s̓ a common name for a function that makes a new value

of some kind.

In full, the line:

let mut guess = String::new();

has created a mutable variable that is currently bound to a new, empty instance of a String . Whew!

Receiving User Input

Recall that we included the input/output functionality from the standard library with use std::io;  on the

first line of the program. Now weʼll call the stdin  function from the io  module, which will allow us to

handle user input:

use std::io;

fn main() {

    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

If we hadnʼt imported the io  module with use std::io;  at the beginning of the program, we could still

use the function by writing std::io::stdin . The stdin  function returns an instance of

std::io::Stdin , which represents a handle to the standard input for your terminal.

Next, the line .read_line(&mut guess)  calls the read_line  method on the standard input handle to

get input from the user. Weʼre passing &mut guess  as the argument to read_line  to specify the string

where the input should be stored. The full job of read_line  is to take whatever the user types into standard

input and append that into a string. The string argument needs to be mutable so the method can change the

string s̓ content.

The &  indicates that this argument is a reference, providing a way to let multiple parts of your code access

one piece of data without needing to copy it into memory multiple times. References are a complex feature,

and one of Rust s̓ major advantages is how safe and easy it is to use references. You donʼt need to know many

details to finish this program. For now, just remember that, like variables, references are immutable by

default. Hence, you need to write &mut guess  rather than &guess  to make it mutable. (Chapter 4 will

explain references more thoroughly.)
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Handling Potential Failure with Result

Weʼre still working on this line of code. The next part is this method:

use std::io;

fn main() {

    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

We could have written this as:

io::stdin().read_line(&mut guess).expect("Failed to read line");

However, one long line is difficult to read, so it s̓ best to divide it. It s̓ often wise to introduce a newline and

other whitespace to help break up long lines when you call a method with the .method_name()  syntax.

Now let s̓ discuss what this line does.

As mentioned earlier, read_line  puts whatever the user enters into the string we pass to it, but it also

returns a Result  value. Result  is an enumeration (enum), which is a type that can be in one of multiple

states, called variants.

Chapter 6 will cover enums in more detail. The purpose of these Result  types is to encode error-handling

information.

Result s̓ variants are Ok  and Err . The Ok  variant indicates the operation was successful and contains

the successfully generated value. The Err  variant means the operation failed, and it contains information

about how or why the operation failed.

Values of the Result  type, like values of any type, have methods on them. An instance of Result  has an

expect  method that you can call. If this Result  instance is an Err  value, expect  will cause the

program to crash and display the message you provided as an argument. If read_line  returns an Err , it

might be due to an error from the underlying operating system. If it is an Ok , expect  will return the

contained value (the number of bytes in the input) so you can use it.

If you donʼt call expect , the program will compile, but youʼll see a warning:

$ cargo build

   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

warning: unused `Result` that must be used

  --> src/main.rs:10:5

   |

10 |     io::stdin().read_line(&mut guess);

   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

   |

   = note: this `Result` may be an `Err` variant, which should be handled

   = note: `#[warn(unused_must_use)]` on by default

help: use `let _ = ...` to ignore the resulting value

   |

10 |     let _ = io::stdin().read_line(&mut guess);

   |     +++++++
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Rust warns that you havenʼt handled the Result  returned from read_line , indicating that the program

doesnʼt handle a possible error.

The proper way to suppress this warning is to add error handling. In our case, we prefer the program to crash

if an error occurs, so we use expect :

.read_line(&mut guess)

.expect("Failed to read line");

Youʼll learn about recovering from errors in Chapter 9.

Printing Values with println!  Placeholders

Aside from the closing curly bracket, there s̓ only one more line to discuss in the code so far:

println!("You guessed: {guess}");

This line prints the string that now contains the user s̓ input. The {}  set of curly brackets is a placeholder:

think of {}  as little crab pincers that hold a value in place. When printing the value of a variable, the

variable name can go inside the curly brackets. When printing the result of evaluating an expression, place

empty curly brackets in the format string, then follow it with a comma-separated list of expressions to print in

each placeholder. Printing a variable and the result of an expression in one call looks like this:

#![allow(unused)]

fn main() {

    let x = 5;

    let y = 10;

    println!("x = {x} and y + 2 = {}", y + 2);

}

This would print x = 5 and y + 2 = 12 .

Testing the First Part

Let s̓ test the first part of the guessing game. Run it using cargo run :

$ cargo run

   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

    Finished dev [unoptimized + debuginfo] in 6.44s

     Running `target/debug/guessing_game`

Guess the number!

Please input your guess.

6

You guessed: 6

Now the first part is working: it gets input from the keyboard and prints it.

Generating a Secret Number

Next, we need to generate a secret number for the user to guess. It should be different every time for

variability, so weʼll use a random number between 1 and 100. Rust doesnʼt include random number

functionality in its standard library, but the rand crate provides this functionality.

Using a Crate to Get More Functionality
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A crate is a collection of Rust source code files. The project weʼve been building is a binary crate (executable).

The rand  crate is a library crate (a library). Cargo manages external crates very efficiently:

Before we write code that uses rand , we need to modify Cargo.toml  to include it as a dependency. Add

the following to Cargo.toml  under [dependencies] :

[dependencies]

rand = "0.8.5"

Cargo will then fetch and compile this crate and its dependencies.

Now, build the project:

$ cargo build

This command will download the rand  crate, compile it, and build your project with it. When you run

cargo build  again without changes, it will skip recompiling dependencies that haven't changed.

In src/main.rs , include code to generate a random number:

use std::io;

use rand::Rng;

fn main() {

    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    println!("You guessed: {guess}");

}

Run the program multiple times to see different secret numbers. Remove the println!  line that outputs

the secret number in the final version, because it ruins the game.

Comparing the Guess to the Secret Number

Now that we have user input and a random number, compare them as shown in Listing 2-4:

use std::cmp::Ordering;

use std::io;

use rand::Rng;

fn main() {

    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);
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    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()

        .read_line(&mut guess)

        .expect("Failed to read line");

    let guess: u32 = guess.trim().parse().expect("Please type a number!");

    println!("You guessed: {guess}");

    match guess.cmp(&secret_number) {

        Ordering::Less => println!("Too small!"),

        Ordering::Greater => println!("Too big!"),

        Ordering::Equal => {

            println!("You win!");

            break;

        }

    }

}

This code compares the user's guess with the secret number using cmp , which returns an Ordering . The

match  expression handles the three cases: less, greater, and equal. When the guess matches the secret

number, it declares victory and exits the loop.

Allowing Multiple Guesses with Looping

Add a loop  to permit multiple guesses:

use std::cmp::Ordering;

use std::io;

use rand::Rng;

fn main() {

    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    loop {

        println!("Please input your guess.");

        let mut guess = String::new();

        io::stdin()

            .read_line(&mut guess)

            .expect("Failed to read line");

        let guess: u32 = guess.trim().parse().expect("Please type a number!");

        println!("You guessed: {guess}");

        match guess.cmp(&secret_number) {

            Ordering::Less => println!("Too small!"),
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            Ordering::Greater => println!("Too big!"),

            Ordering::Equal => {

                println!("You win!");

                break;

            }

        }

    }

}

Within the loop, the game repeatedly prompts for guesses. To handle non-number inputs gracefully, modify

the parsing to ignore errors:

let guess: u32 = match guess.trim().parse() {

    Ok(num) => num,

    Err(_) => continue,

};

This way, if parsing fails, the program simply prompts again without crashing.

Quitting After a Correct Guess

Use break  after a correct guess to exit the loop:

match guess.cmp(&secret_number) {

    Ordering::Less => println!("Too small!"),

    Ordering::Greater => println!("Too big!"),

    Ordering::Equal => {

        println!("You win!");

        break;

    }

}

Handling Invalid Input

Replace the expect  call with a match  to ignore invalid inputs:

let guess: u32 = match guess.trim().parse() {

    Ok(num) => num,

    Err(_) => continue,

};

Now, the game ignores non-number inputs and continues prompting.

Completing the Game

Remove the secret number output for a fair game. The final code:

use std::cmp::Ordering;

use std::io;

use rand::Rng;

fn main() {

    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);
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    loop {

        println!("Please input your guess.");

        let mut guess = String::new();

        io::stdin()

            .read_line(&mut guess)

            .expect("Failed to read line");

        let guess: u32 = match guess.trim().parse() {

            Ok(num) => num,

            Err(_) => continue,

        };

        println!("You guessed: {guess}");

        match guess.cmp(&secret_number) {

            Ordering::Less => println!("Too small!"),

            Ordering::Greater => println!("Too big!"),

            Ordering::Equal => {

                println!("You win!");

                break;

            }

        }

    }

}

Congratulations! Youʼve successfully built the guessing game.

Summary

This project introduced many Rust concepts: variables, match , functions, use of external crates, and more.

In upcoming chapters, these concepts will be explored in depth, including ownership, structs, enums, and

more.
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Variables and Mutability - The Rust
Programming Language

Introduction

As mentioned in the “Storing Values with Variables” section, by default, variables are immutable. This is one

of many nudges Rust gives you to write your code in a way that takes advantage of the safety and easy

concurrency that Rust offers. However, you still have the option to make your variables mutable. Let s̓ explore

how and why Rust encourages you to favor immutability and why sometimes you might want to opt out.

Immutable Variables

When a variable is immutable, once a value is bound to a name, you canʼt change that value. To illustrate this,

generate a new project called variables in your projects directory by using cargo new variables .

Then, in your new variables directory, open src/main.rs and replace its code with the following, which wonʼt

compile just yet:

Filename: src/main.rs

fn main() {

    let x = 5;

    println!("The value of x is: {x}");

    x = 6;

    println!("The value of x is: {x}");

}

Save and run the program using cargo run . You should receive an error message regarding an

immutability error, as shown:

$ cargo run

   Compiling variables v0.1.0 (file:///projects/variables)

error[E0384]: cannot assign twice to immutable variable `x`

 --&gt; src/main.rs:4:5

  |

2 |     let x = 5;

  |         - first assignment to `x`

3 |     println!("The value of x is: {x}");

4 |     x = 6;

  |     ^^^^^ cannot assign twice to immutable variable

  |

help: consider making this binding mutable

  |

2 |     let mut x = 5;

  |         +++

This example shows how the compiler helps you find errors in your programs. Compiler errors can be

frustrating, but they only mean your program isnʼt safely doing what you want it to do yet; they do not mean

that youʼre not a good programmer! Experienced Rustaceans still get compiler errors.

You received the error message cannot assign twice to immutable variable x`` because you

tried to assign a second value to the immutable x  variable.
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Importance of Compile-Time Errors for
Immutability

It's important to get compile-time errors when trying to change a value designated as immutable because this

can lead to bugs. If one part of our code operates on the assumption that a value will never change and

another part changes that value, it many not do what was designed. The Rust compiler guarantees that when

you state that a value wonʼt change, it really wonʼt, making code easier to reason about.

Mutability

Mutability can be very useful and make code more convenient to write. Although variables are immutable by

default, you can make them mutable by adding mut  in front of the variable name as you did in Chapter 2.

Adding mut  also signals to future readers that the variable s̓ value will change.

For example, change src/main.rs to the following:

Filename: src/main.rs

fn main() {

    let mut x = 5;

    println!("The value of x is: {x}");

    x = 6;

    println!("The value of x is: {x}");

}

When you run the program now, you get:

$ cargo run

   Compiling variables v0.1.0 (file:///projects/variables)

    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.30s

     Running `target/debug/variables`

The value of x is: 5

The value of x is: 6

Weʼre allowed to change the value bound to x  from 5  to 6  because mut  is used. Deciding whether to

use mutability depends on what is clearest in a particular context.

Constants

Like immutable variables, constants are values bound to a name and are not allowed to change, but there are

differences:

You cannot use mut  with constants—they're always immutable.

Declared with the const  keyword and require explicit type annotations.

Can be declared in any scope, including global scope.

Must be set to a constant expression, not a value computed at runtime.

Example:

#![allow(unused)]

fn main() {

    const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

}

Constants are useful for values needed throughout the program, such as maximum scores or physical

constants.
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Shadowing

You can declare a new variable with the same name as a previous variable, which "shadows" the first. Rust

treats the new variable as the one in scope, effectively replacing the previous.

Example:

Filename: src/main.rs

fn main() {

    let x = 5;

    let x = x + 1;

    {

        let x = x * 2;

        println!("The value of x in the inner scope is: {x}");

    }

    println!("The value of x is: {x}");

}

Outputs:

$ cargo run

   Compiling variables v0.1.0 (file:///projects/variables)

    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.31s

     Running `target/debug/variables`

The value of x in the inner scope is: 12

The value of x is: 6

Shadowing differs from mut  because the latter allows changing the same variable without creating a new

one, but shadowing can also change the variable's type.

For example:

fn main() {

    let spaces = "   ";

    let spaces = spaces.len();

}

Here, spaces  first holds a string, then re-binds as its length (a number). Using mut  to change types is not

allowed:

fn main() {

    let mut spaces = "   ";

    spaces = spaces.len(); // Error: mismatched types

}

This enforces type safety and clarity.

Conclusion

Variables in Rust can be immutable, mutable, or shadowed, each with specific use cases to maintain safety

and clarity. Constants serve for values that truly never change, across the entire program duration.

Understanding these distinctions helps write safer, more predictable Rust code.
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Data Types - The Rust Programming
Language

Introduction

Every value in Rust is of a certain data type, which tells Rust what kind of data is being specified so it knows

how to work with that data. Weʼll look at two data type subsets: scalar and compound.

Keep in mind that Rust is a statically typed language, which means that it must know the types of all variables

at compile time. The compiler can usually infer what type we want to use based on the value and how we use

it. In cases when many types are possible, such as when we converted a String  to a numeric type using

parse  in the "Comparing the Guess to the Secret Number" section in Chapter 2, we must add a type

annotation, like this:

#![allow(unused)]

fn main() {

    let guess: u32 = "42".parse().expect("Not a number!");

}

If we donʼt add the : u32  type annotation shown in the preceding code, Rust will display the following

error, which means the compiler needs more information from us to know which type we want to use:

$ cargo build

   Compiling no_type_annotations v0.1.0 (file:///projects/no_type_annotations)

error[E0284]: type annotations needed

 --> src/main.rs:2:9

  |

2 |     let guess = "42".parse().expect("Not a number!");

  |         ^^^^^        ----- type must be known at this point

  |

  = note: cannot satisfy `<_ as FromStr>::Err == _`

help: consider giving `guess` an explicit type

  |

2 |     let guess: /* Type */ = "42".parse().expect("Not a number!");

  |              ++++++++++++

For more information about this error, try `rustc --explain E0284`.

error: could not compile `no_type_annotations` (bin "no_type_annotations") due to 1 pr

Youʼll see different type annotations for other data types.

Scalar Types

A scalar type represents a single value. Rust has four primary scalar types: integers, floating-point numbers,

Booleans, and characters. You may recognize these from other programming languages. Let s̓ jump into how

they work in Rust.

Integer Types
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An integer is a number without a fractional component. We used one integer type in Chapter 2, the u32  type.

This type declaration indicates that the value it s̓ associated with should be an unsigned integer (signed integer

types start with i  instead of u ) that takes up 32 bits of space. Table 3-1 shows the built-in integer types in

Rust. We can use any of these variants to declare the type of an integer value.

Table 3-1: Integer Types in Rust

Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

32-bit i32 u32

64-bit i64 u64

128-bit i128 u128

arch isize usize

Each variant can be either signed or unsigned and has an explicit size. Signed and unsigned refer to whether it s̓

possible for the number to be negative—in other words, whether the number needs to have a sign with it

(signed) or whether the number will only ever be positive and can therefore be represented without a sign

(unsigned). It s̓ like writing numbers on paper: when the sign matters, a number is shown with a plus sign or a

minus sign; however, when it s̓ safe to assume the number is positive, it s̓ shown with no sign. Signed numbers

are stored using twos̓ complement representation.

Each signed variant can store numbers from −(2^(n − 1))  to 2^(n − 1) − 1  inclusive, where n  is

the number of bits that variant uses. So an i8  can store numbers from −128 to 127. Unsigned variants can

store numbers from 0 to 2^n − 1 , so a u8  can store numbers from 0 to 255.

Additionally, the isize  and usize  types depend on the architecture of the computer your program is

running on, which is denoted in the table as “arch”: 64 bits if youʼre on a 64-bit architecture and 32 bits if youʼre

on a 32-bit architecture.

You can write integer literals in any of the forms shown in Table 3-2. Note that number literals that can be

multiple numeric types allow a type suffix, such as 57u8 , to designate the type. Number literals can also use

_  as a visual separator to make the number easier to read, such as 1_000 , which will have the same value

as if you had specified 1000 .

Table 3-2: Integer Literals in Rust

Number literals Example

Decimal 98_222

Hex 0xff

Octal 0o77

Binary 0b1111_0000

Byte ( u8  only) b'A'

So how do you know which type of integer to use? If youʼre unsure, Rust s̓ defaults are generally good places to

start: integer types default to i32 . The primary situation in which youd̓ use isize  or usize  is when

indexing some sort of collection.

Integer Overflow

Let s̓ say you have a variable of type u8  that can hold values between 0 and 255. If you try to change the

variable to a value outside that range, such as 256, integer overflow will occur, which can result in one of two

behaviors. When youʼre compiling in debug mode, Rust includes checks for integer overflow that cause your

program to panic at runtime if this behavior occurs. Rust uses the term panicking when a program exits with
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an error; weʼll discuss panics in more depth in the "Unrecoverable Errors with panic! " section in Chapter

9.

When youʼre compiling in release mode with the --release  flag, Rust does not include checks for integer

overflow that cause panics. Instead, if overflow occurs, Rust performs twoʼs complement wrapping. In short,

values greater than the maximum value the type can hold “wrap around” to the minimum of the values the

type can hold. In the case of a u8 , the value 256 becomes 0, the value 257 becomes 1, and so on. The

program wonʼt panic, but the variable will have a value that probably isnʼt what you were expecting it to have.

Relying on integer overflow s̓ wrapping behavior is considered an error.

To explicitly handle the possibility of overflow, you can use these families of methods provided by the

standard library for primitive numeric types:

Wrap in all modes with the wrapping_*  methods, such as wrapping_add .

Return the None  value if there is overflow with the checked_*  methods.

Return the value and a Boolean indicating whether there was overflow with the overflowing_*

methods.

Saturate at the value s̓ minimum or maximum values with the saturating_*  methods.

Floating-Point Types

Rust also has two primitive types for floating-point numbers, which are numbers with decimal points. Rust s̓

floating-point types are f32  and f64 , which are 32 bits and 64 bits in size, respectively. The default type is

f64  because on modern CPUs, it s̓ roughly the same speed as f32  but is capable of more precision. All

floating-point types are signed.

Here s̓ an example that shows floating-point numbers in action:

// Filename: src/main.rs

fn main() {

    let x = 2.0; // f64

    let y: f32 = 3.0; // f32

}

Floating-point numbers are represented according to the IEEE-754 standard.

Numeric Operations

Rust supports the basic mathematical operations youd̓ expect for all the number types: addition, subtraction,

multiplication, division, and remainder. Integer division truncates toward zero to the nearest integer. The

following code shows how youd̓ use each numeric operation in a let  statement:

// Filename: src/main.rs

fn main() {

    // addition

    let sum = 5 + 10;

    // subtraction

    let difference = 95.5 - 4.3;

    // multiplication

    let product = 4 * 30;
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    // division

    let quotient = 56.7 / 32.2;

    let truncated = -5 / 3; // Results in -1

    // remainder

    let remainder = 43 % 5;

}

Each expression in these statements uses a mathematical operator and evaluates to a single value, which is

then bound to a variable. Appendix B contains a list of all operators that Rust provides.

The Boolean Type

As in most other programming languages, a Boolean type in Rust has two possible values: true  and

false . Booleans are one byte in size. The Boolean type in Rust is specified using bool . For example:

// Filename: src/main.rs

fn main() {

    let t = true;

    let f: bool = false; // with explicit type annotation

}

The main way to use Boolean values is through conditionals, such as an if  expression. Weʼll cover how if

expressions work in Rust in the "Control Flow" section.

The Character Type

Rust s̓ char  type is the language s̓ most primitive alphabetic type. Here are some examples of declaring

char  values:

// Filename: src/main.rs

fn main() {

    let c = 'z';

    let z: char = 'ℤ'; // with explicit type annotation

    let heart_eyed_cat = '😻';

}

Note that we specify char  literals with single quotes, as opposed to string literals, which use double quotes.

Rust s̓ char  type is four bytes in size and represents a Unicode Scalar Value, which means it can represent a

lot more than just ASCII. Accented letters; Chinese, Japanese, and Korean characters; emoji; and zero-width

spaces are all valid char  values in Rust. Unicode Scalar Values range from U+0000  to U+D7FF  and

U+E000  to U+10FFFF  inclusive. However, a “character” isnʼt really a concept in Unicode, so your human

intuition for what a “character” is may not match up with what a char  is in Rust. Weʼll discuss this topic in

detail in "Storing UTF-8 Encoded Text with Strings" in Chapter 8.

Compound Types

Compound types can group multiple values into one type. Rust has two primitive compound types: tuples and

arrays.

The Tuple Type
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A tuple is a general way of grouping together a number of values with a variety of types into one compound

type. Tuples have a fixed length: once declared, they cannot grow or shrink in size.

We create a tuple by writing a comma-separated list of values inside parentheses. Each position in the tuple

has a type, and the types of the different values in the tuple donʼt have to be the same. Weʼve added optional

type annotations in this example:

// Filename: src/main.rs

fn main() {

    let tup: (i32, f64, u8) = (500, 6.4, 1);

}

The variable tup  binds to the entire tuple because a tuple is considered a single compound element. To get

the individual values out of a tuple, we can use pattern matching to destructure a tuple value, like this:

// Filename: src/main.rs

fn main() {

    let tup = (500, 6.4, 1);

    let (x, y, z) = tup;

    println!("The value of y is: {y}");

}

This program first creates a tuple and binds it to the variable tup . It then uses a pattern with let  to take

tup  and turn it into three separate variables, x , y , and z . This is called destructuring because it breaks

the single tuple into three parts. Finally, the program prints the value of y , which is 6.4 .

We can also access a tuple element directly by using a period ( . ) followed by the index of the value we want

to access. For example:

// Filename: src/main.rs

fn main() {

    let x: (i32, f64, u8) = (500, 6.4, 1);

    let five_hundred = x.0;

    let six_point_four = x.1;

    let one = x.2;

}

This program creates the tuple x  and then accesses each element of the tuple using their respective indices.

As with most programming languages, the first index in a tuple is 0.

The tuple without any values has a special name, unit. This value and its corresponding type are both written

() , and represent an empty value or an empty return type. Expressions implicitly return the unit value if

they donʼt return any other value.

The Array Type

Another way to have a collection of multiple values is with an array. Unlike a tuple, every element of an array

must have the same type. Unlike arrays in some other languages, arrays in Rust have a fixed length.

We write the values in an array as a comma-separated list inside square brackets:

// Filename: src/main.rs

fn main() {
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    let a = [1, 2, 3, 4, 5];

}

Arrays are useful when you want your data allocated on the stack, the same as the other types we have seen so

far, rather than the heap (see Chapter 4) or when you want to ensure you always have a fixed number of

elements. An array isnʼt as flexible as the vector type, though. A vector is a similar collection type provided by

the standard library that is allowed to grow or shrink in size. If youʼre unsure whether to use an array or a

vector, chances are you should use a vector. Chapter 8 discusses vectors in more detail.

However, arrays are more useful when you know the number of elements will not need to change. For

example, if you were using the names of the months in a program, you would probably use an array rather

than a vector because you know it will always contain 12 elements:

#![allow(unused)]

fn main() {

    let months = ["January", "February", "March", "April", "May", "June", "July",

                  "August", "September", "October", "November", "December"];

}

You write an array s̓ type using square brackets with the type of each element, a semicolon, and then the

number of elements in the array, like so:

#![allow(unused)]

fn main() {

    let a: [i32; 5] = [1, 2, 3, 4, 5];

}

Here, i32  is the type of each element. After the semicolon, the number 5  indicates the array contains five

elements.

You can also initialize an array to contain the same value for each element by specifying the initial value,

followed by a semicolon, and then the length of the array in square brackets, as shown here:

#![allow(unused)]

fn main() {

    let a = [3; 5];

}

The array named a  will contain 5 elements that will all be set to the value 3  initially. This is the same as

writing let a = [3, 3, 3, 3, 3];  but in a more concise way.

Accessing Array Elements

An array is a single chunk of memory of a known, fixed size that can be allocated on the stack. You can access

elements of an array using indexing, like this:

// Filename: src/main.rs

fn main() {

    let a = [1, 2, 3, 4, 5];

    let first = a[0];

    let second = a[1];

}

In this example, the variable first  will get the value 1  because that is the value at index [0]  in the

array. The variable second  will get the value 2  from index [1]  in the array.
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Invalid Array Element Access

Let s̓ see what happens if you try to access an element of an array that is past the end of the array. Say you run

this code, similar to the guessing game in Chapter 2, to get an array index from the user:

use std::io;

fn main() {

    let a = [1, 2, 3, 4, 5];

    println!("Please enter an array index.");

    let mut index = String::new();

    io::stdin()

        .read_line(&mut index)

        .expect("Failed to read line");

    let index: usize = index

        .trim()

        .parse()

        .expect("Index entered was not a number");

    let element = a[index];

    println!("The value of the element at index {index} is: {element}");

}

This code compiles successfully. If you run this code using cargo run  and enter 0 , 1 , 2 , 3 , or 4 ,

the program will print out the corresponding value at that index in the array. If you instead enter a number

past the end of the array, such as 10 , youʼll see output like this:

thread 'main' panicked at src/main.rs:19:19:

index out of bounds: the len is 5 but the index is 10

note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

The program resulted in a runtime error at the point of using an invalid value in the indexing operation. The

program exited with an error message and didnʼt execute the final println!  statement. When you attempt

to access an element using indexing, Rust will check that the index youʼve specified is less than the array

length. If the index is greater than or equal to the length, Rust will panic. This check has to happen at runtime,

especially in this case, because the compiler canʼt possibly know what value a user will enter when they run

the code later.

This is an example of Rust s̓ memory safety principles in action. In many low-level languages, this kind of

check is not done, and when you provide an incorrect index, invalid memory can be accessed. Rust protects

you against this kind of error by immediately exiting instead of allowing the memory access and continuing.

Chapter 9 discusses more of Rust s̓ error handling and how you can write readable, safe code that neither

panics nor allows invalid memory access.
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Functions - The Rust Programming
Language

Introduction

Functions are prevalent in Rust code. Youʼve already seen one of the most important functions in the

language: the main  function, which is the entry point of many programs. Youʼve also seen the fn  keyword,

which allows you to declare new functions.

Rust code uses snake case as the conventional style for function and variable names, in which all letters are

lowercase and underscores separate words. Here s̓ a program that contains an example function definition:

Filename: src/main.rs

fn main() {

    println!("Hello, world!");

    another_function();

}

fn another_function() {

    println!("Another function.");

}

We define a function in Rust by entering fn  followed by a function name and a set of parentheses. The curly

brackets tell the compiler where the function body begins and ends.

We can call any function weʼve defined by entering its name followed by a set of parentheses. Because

another_function  is defined in the program, it can be called from inside the main  function. Note that

we defined another_function  after the main  function in the source code; we could have defined it

before as well. Rust doesnʼt care where you define your functions, only that theyʼre defined somewhere in a

scope that can be seen by the caller.

Let s̓ start a new binary project named functions to explore functions further. Place the another_function

example in src/main.rs  and run it. You should see the following output:

$ cargo run

   Compiling functions v0.1.0 (file:///projects/functions)

    Finished dev [unoptimized + debuginfo] in 0.28s

     Running `target/debug/functions`

Hello, world!

Another function.

The lines execute in the order in which they appear in the main  function. First the “Hello, world!” message

prints, and then another_function  is called and its message is printed.

Parameters

We can define functions to have parameters, which are special variables that are part of a functions̓ signature.

When a function has parameters, you can provide it with concrete values for those parameters. Technically,

the concrete values are called arguments, but in casual conversation, people tend to use the words parameter
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and argument interchangeably for either the variables in a functions̓ definition or the concrete values passed

in when you call a function.

In this version of another_function , we add a parameter:

Filename: src/main.rs

fn main() {

    another_function(5);

}

fn another_function(x: i32) {

    println!("The value of x is: {x}");

}

Try running this program; you should get the following output:

$ cargo run

   Compiling functions v0.1.0 (file:///projects/functions)

    Finished dev [unoptimized + debuginfo] in 1.21s

     Running `target/debug/functions`

The value of x is: 5

The declaration of another_function  has one parameter named x . The type of x  is specified as

i32 . When we pass 5  into another_function , the println!  macro places 5  where the pair of

curly brackets containing x  was in the format string.

In function signatures, you must declare the type of each parameter. This is a deliberate decision in Rust s̓

design: requiring type annotations in function definitions means the compiler almost never needs you to use

them elsewhere in the code to figure out what type you mean. The compiler is also able to give more helpful

error messages if it knows what types the function expects.

When defining multiple parameters, separate the parameter declarations with commas, like this:

Filename: src/main.rs

fn main() {

    print_labeled_measurement(5, 'h');

}

fn print_labeled_measurement(value: i32, unit_label: char) {

    println!("The measurement is: {value}{unit_label}");

}

This example creates a function named print_labeled_measurement  with two parameters. The first

parameter is named value  and is an i32 . The second is named unit_label  and is of type char .

The function then prints text containing both the value  and the unit_label .

Let s̓ try running this code. Replace the program currently in your functions project s̓ src/main.rs  file with

the preceding example and run it using cargo run . The output will be:

$ cargo run

   Compiling functions v0.1.0 (file:///projects/functions)

    Finished dev [unoptimized + debuginfo] in 0.31s

     Running `target/debug/functions`

The measurement is: 5h

Because we called the function with 5  as the value for value  and 'h'  as the value for unit_label ,

the program output contains those values.
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Statements and Expressions

Function bodies are made up of a series of statements optionally ending in an expression. So far, the functions

weʼve covered havenʼt included an ending expression, but you have seen an expression as part of a statement.

Because Rust is an expression-based language, this is an important distinction to understand. Other languages

donʼt have the same distinctions, so let s̓ look at what statements and expressions are and how their

differences affect the bodies of functions.

Statements are instructions that perform some action and do not return a value.

Expressions evaluate to a resultant value. Let s̓ look at some examples.

Weʼve actually already used statements and expressions. Creating a variable and assigning a value to it with

the let  keyword is a statement. In Listing 3-1, let y = 6;  is a statement.

Listing 3-1: A main  function declaration containing one statement

fn main() {

    let y = 6;

}

Function definitions are also statements; the entire preceding example is a statement in itself. (As we will see

below, calling a function is not a statement.)

Statements do not return values. Therefore, you canʼt assign a let  statement to another variable, as the

following code tries to do; youʼll get an error:

Filename: src/main.rs

fn main() {

    let x = (let y = 6);

}

When you run this program, the error youʼll see is:

$ cargo run

   Compiling functions v0.1.0 (file:///projects/functions)

error: expected expression, found `let` statement

 --> src/main.rs:2:14

  |

2 |     let x = (let y = 6);

  |              ^^^

  |

  = note: only supported directly in conditions of `if` and `while` expressions

warning: unnecessary parentheses around assigned value

 --> src/main.rs:2:13

  |

2 |     let x = (let y = 6);

  |             ^         ^

  |

  = note: `#[warn(unused_parens)]` on by default

help: remove these parentheses

  |

2 -     let x = (let y = 6);

2 +     let x = let y = 6;

  |
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warning: `functions` (bin "functions") generated 1 warning

error: could not compile `functions` due to 1 previous error; 1 warning emitted

The let y = 6  statement does not return a value, so there isnʼt anything for x  to bind to. This is different

from what happens in other languages, such as C and Ruby, where the assignment returns the value of the

assignment. In those languages, you can write x = y = 6  and have both x  and y  have the value 6 ;

that is not the case in Rust.

Expressions evaluate to a value and make up most of the rest of the code that youʼll write in Rust. Consider a

math operation, such as 5 + 6 , which is an expression that evaluates to the value 11 . Expressions can be

part of statements: in Listing 3-1, the 6  in the statement let y = 6;  is an expression that evaluates to

the value 6 . Calling a function is an expression. Calling a macro is an expression. A new scope block created

with curly brackets is an expression, for example:

Filename: src/main.rs

fn main() {

    let y = {

        let x = 3;

        x + 1

    };

    println!("The value of y is: {y}");

}

This expression:

{

    let x = 3;

    x + 1

}

is a block that, in this case, evaluates to 4 . That value gets bound to y  as part of the let  statement. Note

that the x + 1  line doesnʼt have a semicolon at the end, which is unlike most of the lines youʼve seen so far.

Expressions do not include ending semicolons. If you add a semicolon to the end of an expression, you turn it

into a statement, and it will then not return a value. Keep this in mind as you explore function return values

and expressions next.

Functions with Return Values

Functions can return values to the code that calls them. We donʼt name return values, but we must declare

their type after an arrow ( -> ). In Rust, the return value of the function is synonymous with the value of the

final expression in the body of the function. You can return early from a function by using the return

keyword and specifying a value, but most functions return the last expression implicitly. Here s̓ an example:

Filename: src/main.rs

fn five() -> i32 {

    5

}

fn main() {

    let x = five();

    println!("The value of x is: {x}");

}
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There are no function calls, macros, or even let  statements in the five  function—just the number 5  by

itself. That s̓ a perfectly valid function in Rust. Note that the functions̓ return type is specified as -> i32 .

Try running this code; the output should be:

$ cargo run

   Compiling functions v0.1.0 (file:///projects/functions)

    Finished dev [unoptimized + debuginfo] in 0.30s

     Running `target/debug/functions`

The value of x is: 5

The 5  in five  is the functions̓ return value, which is why the return type is i32 . Let s̓ examine this

further. There are two important bits:

First, the line let x = five();  shows that weʼre using the return value of a function to initialize a

variable. Because five  returns 5 , the line is equivalent to:

#![allow(unused)]

fn main() {

    let x = 5;

}

Second, the five  function has no parameters and defines the type of the return value, but the body of the

function is a lonely 5  with no semicolon because it s̓ an expression whose value we want to return.

Let s̓ look at another example:

Filename: src/main.rs

fn main() {

    let x = plus_one(5);

    println!("The value of x is: {x}");

}

fn plus_one(x: i32) -> i32 {

    x + 1

}

Running this code will print The value of x is: 6 . But if we place a semicolon at the end of the line

containing x + 1 , changing it from an expression to a statement, weʼll get an error:

Filename: src/main.rs

fn main() {

    let x = plus_one(5);

    println!("The value of x is: {x}");

}

fn plus_one(x: i32) -> i32 {

    x + 1;

}

Compiling this code produces the following error:

$ cargo run

   Compiling functions v0.1.0 (file:///projects/functions)

error[E0308]: mismatched types

 --> src/main.rs:7:24

36



  |

7 | fn plus_one(x: i32) -> i32 {

  |    --------            ^^^ expected `i32`, found `()`

  |    |

  |    implicitly returns `()` as its body has no tail or `return` expression

8 |     x + 1;

  |          - help: remove this semicolon to return this value

The core issue is that the function plus_one  is expected to return an i32 , but because the last line ends

with a semicolon, it returns () , the unit type, instead. Removing the semicolon fixes this.

This completes the overview of functions in Rust, including parameters, statements, expressions, and return values.
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Comments - The Rust Programming
Language

Comments

All programmers strive to make their code easy to understand, but sometimes extra explanation is warranted.

In these cases, programmers leave comments in their source code that the compiler will ignore but people

reading the source code may find useful.

Here s̓ a simple comment:

#![allow(unused)]

fn main() {

    // hello, world

}

In Rust, the idiomatic comment style starts a comment with two slashes, and the comment continues until the

end of the line. For comments that extend beyond a single line, youʼll need to include //  on each line, like

this:

#![allow(unused)]

fn main() {

    // So we're doing something complicated here, long enough that we need

    // multiple lines of comments to do it! Whew! Hopefully, this comment will

    // explain what's going on.

}

Comments can also be placed at the end of lines containing code:

Filename: src/main.rs

fn main() {

    let lucky_number = 7; // I'm feeling lucky today

}

But youʼll more often see them used in this format, with the comment on a separate line above the code it s̓

annotating:

Filename: src/main.rs

fn main() {

    // I'm feeling lucky today

    let lucky_number = 7;

}

Rust also has another kind of comment, documentation comments, which weʼll discuss in the “Publishing a

Crate to Crates.io” section of Chapter 14.
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Control Flow - The Rust
Programming Language

Introduction

The ability to run some code depending on whether a condition is true and to run some code repeatedly while

a condition is true are basic building blocks in most programming languages. The most common constructs

that let you control the flow of execution of Rust code are if  expressions and loops.

if  Expressions

An if  expression allows you to branch your code depending on conditions. You provide a condition and

then state, “If this condition is met, run this block of code. If the condition is not met, do not run this block of

code.”

Create a new project called branches in your projects directory to explore the if  expression. In the

src/main.rs  file, input the following:

fn main() {

    let number = 3;

    if number < 5 {

        println!("condition was true");

    } else {

        println!("condition was false");

    }

}

All if  expressions start with the keyword if , followed by a condition. In this case, the condition checks

whether or not the variable number  has a value less than 5. We place the block of code to execute if the

condition is true  immediately after the condition inside curly brackets. Blocks of code associated with the

conditions in if  expressions are sometimes called arms, just like the arms in match  expressions

discussed in the “Comparing the Guess to the Secret Number” section of Chapter 2.

Optionally, we can include an else  expression, which we chose here, to give the program an alternative

block of code to execute should the condition evaluate to false . If you donʼt provide an else  expression

and the condition is false , the program will just skip the if  block and move on to the next bit of code.

Try running this code; you should see the following output:

$ cargo run

   Compiling branches v0.1.0 (file:///projects/branches)

    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.31s

     Running `target/debug/branches`

condition was true

Let s̓ try changing the value of number  to a value that makes the condition false :

fn main() {

    let number = 7;

    if number < 5 {
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        println!("condition was true");

    } else {

        println!("condition was false");

    }

}

Run the program again, and observe:

$ cargo run

   Compiling branches v0.1.0 (file:///projects/branches)

    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.31s

     Running `target/debug/branches`

condition was false

It s̓ important to note that the condition in this code must be a bool . Rust does not automatically convert

non-Boolean types to a Boolean, unlike languages such as Ruby and JavaScript. For example, the following

code causes an error:

fn main() {

    let number = 3;

    if number {

        println!("number was three");

    }

}

The error indicates that number  evaluates to an integer, not a bool .

To check if a number is not equal to 0  and run code only then, you can write:

fn main() {

    let number = 3;

    if number != 0 {

        println!("number was something other than zero");

    }

}

Handling Multiple Conditions with else if

You can combine multiple conditions using else if  expressions:

fn main() {

    let number = 6;

    if number % 4 == 0 {

        println!("number is divisible by 4");

    } else if number % 3 == 0 {

        println!("number is divisible by 3");

    } else if number % 2 == 0 {

        println!("number is divisible by 2");

    } else {

        println!("number is not divisible by 4, 3, or 2");

    }

}
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The program checks each condition in turn and executes the first one that evaluates to true . For number

6 , the output will be:

$ cargo run

   Compiling branches v0.1.0 (file:///projects/branches)

    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.31s

     Running `target/debug/branches`

number is divisible by 3

Once a condition is found true , the remaining conditions are not checked.

Using if  in a let  Statement

Because if  is an expression, you can assign its result to a variable:

fn main() {

    let condition = true;

    let number = if condition { 5 } else { 6 };

    println!("The value of number is: {number}");

}

This will output:

The value of number is: 5

Note that blocks evaluate to the last expression in the block. All if  arms must return the same type;

mismatched types cause errors:

fn main() {

    let condition = true;

    let number = if condition { 5 } else { "six" };

    println!("The value of number is: {number}");

}

This code results in a compile-time error because the arms return incompatible types ( i32  vs &str ).

Repetition with Loops

Loops are used to execute code repeatedly.

Repeating code with loop

fn main() {

    loop {

        println!("again!");

    }

}

This program runs indefinitely until manually interrupted (e.g., by pressing ctrl - c ). You can use

break  to exit a loop explicitly. You can also use continue  to skip to the next iteration.

Returning values from loops
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A loop can return a value via break . For example:

fn main() {

    let mut counter = 0;

    let result = loop {

        counter += 1;

        if counter == 10 {

            break counter * 2;

        }

    };

    println!("The result is {result}");

}

This will output:

The result is 20

Loop labels

When you have nested loops, break  and continue  apply to the innermost loop. Loop labels allow

specifying the target loop:

fn main() {

    let mut count = 0;

    'counting_up: loop {

        println!("count = {count}");

        let mut remaining = 10;

        loop {

            println!("remaining = {remaining}");

            if remaining == 9 {

                break;

            }

            if count == 2 {

                break 'counting_up;

            }

            remaining -= 1;

        }

        count += 1;

    }

    println!("End count = {count}");

}

Output:

count = 0

remaining = 10

remaining = 9

count = 1

remaining = 10

remaining = 9

count = 2
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remaining = 10

End count = 2

Conditional loops with while

while  loops evaluate a condition each time, executing the loop body while the condition is true :

fn main() {

    let mut number = 3;

    while number != 0 {

        println!("{number}!");

        number -= 1;

    }

    println!("LIFTOFF!!!");

}

Looping Through Collections

Using a while  loop is error-prone for collections, since it requires manual index management. Instead,

Rust's for  loop is safe and concise:

fn main() {

    let a = [10, 20, 30, 40, 50];

    for element in a {

        println!("the value is: {element}");

    }

}

This will print all elements safely and efficiently.

Counting down with for  and rev()

fn main() {

    for number in (1..4).rev() {

        println!("{number}!");

    }

    println!("LIFTOFF!!!");

}

Summary

You have learned about variables, data types, functions, comments, if  expressions, and loops. To practice,

consider building programs to:

Convert temperatures between Fahrenheit and Celsius

Generate the nth Fibonacci number

Print the lyrics of “The Twelve Days of Christmas”

Next, we will discuss a Rust concept that is unique compared to many other languages: ownership.
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What Is Ownership? - The Rust
Programming Language

The Stack and the Heap

Many programming languages donʼt require you to think about the stack and the heap very often. But in a

systems programming language like Rust, whether a value is on the stack or the heap affects how the language

behaves and why you have to make certain decisions. Parts of ownership will be described in relation to the

stack and the heap later in this chapter, so here is a brief explanation in preparation.

Both the stack and the heap are parts of memory available to your code to use at runtime, but they are

structured in different ways. The stack stores values in the order it gets them and removes the values in the

opposite order. This is referred to as last in, first out. Think of a stack of plates: when you add more plates, you

put them on top of the pile, and when you need a plate, you take one off the top. Adding or removing plates

from the middle or bottom wouldnʼt work as well! Adding data is called pushing onto the stack, and removing

data is called popping off the stack. All data stored on the stack must have a known, fixed size. Data with an

unknown size at compile time or a size that might change must be stored on the heap instead.

The heap is less organized: when you put data on the heap, you request a certain amount of space. The

memory allocator finds an empty spot in the heap that is big enough, marks it as being in use, and returns a

pointer, which is the address of that location. This process is called allocating on the heap and is sometimes

abbreviated as just allocating (pushing values onto the stack is not considered allocating). Because the pointer

to the heap is a known, fixed size, you can store the pointer on the stack, but when you want the actual data,

you must follow the pointer. Think of being seated at a restaurant. When you enter, you state the number of

people in your group, and the host finds an empty table that fits everyone and leads you there. If someone in

your group comes late, they can ask where youʼve been seated to find you.

Pushing to the stack is faster than allocating on the heap because the allocator never has to search for a place

to store new data; that location is always at the top of the stack. Comparatively, allocating space on the heap

requires more work because the allocator must first find a big enough space to hold the data and then perform

bookkeeping to prepare for the next allocation.

Accessing data in the heap is slower than accessing data on the stack because you have to follow a pointer to

get there. Contemporary processors are faster if they jump around less in memory. Continuing the analogy,

consider a server at a restaurant taking orders from many tables. It s̓ most efficient to get all the orders at one

table before moving on to the next. Taking an order from table A, then B, then A again, and then B again

would be much slower. By the same token, a processor can do its job better if it works on data that s̓ close to

other data (on the stack) rather than farther away (on the heap).

When your code calls a function, the values passed into the function (including, potentially, pointers to data

on the heap) and the functions̓ local variables get pushed onto the stack. When the function is over, those

values get popped off the stack.

Keeping track of what parts of code are using what data on the heap, minimizing duplicate data on the heap,

and cleaning up unused data so you donʼt run out of space are all problems that ownership addresses. Once

you understand ownership, you wonʼt need to think about the stack and the heap very often, but knowing that

the main purpose of ownership is to manage heap data can help explain why it works the way it does.

Ownership Rules
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First, let s̓ take a look at the ownership rules. Keep these rules in mind as we work through the examples that

illustrate them:

Each value in Rust has an owner.

There can only be one owner at a time.

When the owner goes out of scope, the value will be dropped.

Variable Scope

Now that weʼre past basic Rust syntax, we wonʼt include all the fn main() {  code in examples, so if youʼre

following along, make sure to put the following examples inside a main  function manually. As a result, our

examples will be a bit more concise, letting us focus on the actual details rather than boilerplate code.

As a first example of ownership, weʼll look at the scope of some variables. A scope is the range within a

program for which an item is valid. Take the following variable:

#![allow(unused)]

fn main() {

    let s = "hello";

}

The variable s  refers to a string literal, where the value of the string is hardcoded into the text of our

program. The variable is valid from the point at which it s̓ declared until the end of the current scope. Listing 4-

1 shows a program with comments annotating where the variable s  would be valid.

Listing 4-1: A variable and the scope in which it is valid

fn main() {

    {                      // s is not valid here, it’s not yet declared

        let s = "hello";   // s is valid from this point forward

        // do stuff with s

    }                      // this scope is now over, and s is no longer valid

}

In other words, there are two important points:

When s  comes into scope, it is valid.

It remains valid until it goes out of scope.

At this point, the relationship between scopes and when variables are valid is similar to that in other

programming languages. Now weʼll build on this understanding by introducing the String  type.

The String  Type

To illustrate the rules of ownership, we need a data type that is more complex than those we covered in the

"Data Types" section of Chapter 3. The types covered previously are of a known size, can be stored on the stack

and popped off the stack when their scope is over, and can be quickly and trivially copied to make a new,

independent instance if another part of code needs to use the same value in a different scope. But we want to

look at data that is stored on the heap and explore how Rust knows when to clean up that data, and the

String  type is a great example.

Weʼll concentrate on the parts of String  that relate to ownership. These aspects also apply to other

complex data types, whether they are provided by the standard library or created by you. Weʼll discuss

String  in more depth in Chapter 8.
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Weʼve already seen string literals, where a string value is hardcoded into our program. String literals are

convenient, but they arenʼt suitable for every situation where we may want to use text. One reason is that

theyʼre immutable. Another is that not every string value can be known when we write our code: for example,

what if we want to take user input and store it? For these situations, Rust has a second string type, String .

This type manages data allocated on the heap and, as such, is able to store an amount of text that is unknown

at compile time. You can create a String  from a string literal using the from  function, like so:

#![allow(unused)]

fn main() {

    let s = String::from("hello");

}

The double colon ::  operator allows us to namespace this particular from  function under the String

type rather than using some sort of name like string_from . Weʼll discuss this syntax more in the Chapter

5 section "Method Syntax," and when we talk about namespacing with modules in Chapter 7.

This kind of string can be mutated:

fn main() {

    let mut s = String::from("hello");

    s.push_str(", world!"); // push_str() appends a literal to a String

    println!("{s}"); // This will print `hello, world!`

}

So, why can String  be mutated but literals cannot? The difference is in how these two types deal with

memory.

Memory and Allocation

In the case of a string literal, we know the contents at compile time, so the text is hardcoded directly into the

final executable. This is why string literals are fast and efficient. But these properties only come from the

string literal s̓ immutability. Unfortunately, we canʼt put a blob of memory into the binary for each piece of text

whose size is unknown at compile time and whose size might change while running the program.

With the String  type, to support a mutable, growable piece of text, we need to allocate an amount of

memory on the heap, unknown at compile time, to hold the contents. This means:

The memory must be requested from the memory allocator at runtime.

We need a way of returning this memory to the allocator when weʼre done with our String .

That first part is done by us: when we call String::from , its implementation requests the memory it

needs. This is pretty much universal in programming languages.

However, the second part is different. In languages with a garbage collector (GC), the GC keeps track of and

cleans up memory that isnʼt being used anymore, and we donʼt need to think about it. In most languages

without a GC, it s̓ our responsibility to identify when memory is no longer being used and to call code to

explicitly free it, just as we did to request it. Doing this correctly has historically been a difficult programming

problem. If we forget, weʼll waste memory. If we do it too early, weʼll have an invalid variable. If we do it twice,

that s̓ a bug too. We need to pair exactly one allocate with exactly one free.

Rust takes a different path: the memory is automatically returned once the variable that owns it goes out of

scope. Here s̓ a version of our scope example from Listing 4-1 using a String  instead of a string literal:

fn main() {

    {
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        let s = String::from("hello"); // s is valid from this point forward

        // do stuff with s

    }                                   // this scope is now over, and s is no longer 

}

There is a natural point at which we can return the memory our String  needs to the allocator: when s

goes out of scope. When a variable goes out of scope, Rust calls a special function for us. This function is

called drop, and it s̓ where the author of String  can put the code to return the memory. Rust calls drop

automatically at the closing curly bracket.

Note:

In C++, this pattern of deallocating resources at the end of an items̓ lifetime is sometimes called Resource

Acquisition Is Initialization (RAII). The drop  function in Rust will be familiar to you if youʼve used RAII

patterns.

This pattern has a profound impact on the way Rust code is written. It may seem simple right now, but the

behavior of code can be unexpected in more complicated situations when we want to have multiple variables

use the data weʼve allocated on the heap. Let s̓ explore some of those situations now.

Variables and Data Interacting with Move

Multiple variables can interact with the same data in different ways in Rust. Let s̓ look at an example using an

integer in Listing 4-2.

Listing 4-2: Assigning the integer value of variable x  to y

fn main() {

    let x = 5;

    let y = x;

}

We can probably guess what this is doing: “bind the value 5  to x ; then make a copy of the value in x  and

bind it to y .” We now have two variables, x  and y , and both equal 5 . This is indeed what is happening

because integers are simple values with a known, fixed size, and these two 5  values are pushed onto the

stack.

Now let s̓ look at the String  version:

fn main() {

    let s1 = String::from("hello");

    let s2 = s1;

}

This looks very similar, so we might assume that the way it works would be the same: that is, the second line

would make a copy of the value in s1  and bind it to s2 . But this isnʼt quite what happens.

Take a look at Figure 4-1 to see what is happening to String  under the covers. A String  is made up of

three parts, shown on the left: a pointer to the memory that holds the contents of the string, a length, and a

capacity. This group of data is stored on the stack. On the right is the memory on the heap that holds the

contents.

Representation in memory of a String  holding the value "hello"  bound to s1

47



The length is how much memory, in bytes, the contents of the String  are currently using. The capacity is

the total amount of memory, in bytes, that the String  has received from the allocator. The difference

between length and capacity matters, but not in this context, so for now, it s̓ fine to ignore the capacity.

When we assign s1  to s2 , the String  data is copied, meaning we copy the pointer, the length, and the

capacity stored on the stack. We do not copy the data on the heap that the pointer refers to. The memory looks

like this:

Representation after s2 = s1

The data pointers point to the same location. This is a problem: when s2  and s1  go out of scope, they will

both try to free the same memory. This is known as a double free error, a type of memory safety bug. Rust

prevents this by invalidating s1  when s2  takes ownership, so only s2  will free the memory when it goes

out of scope.

Trying to use s1  after s2  is created results in a compile-time error:

fn main() {

    let s1 = String::from("hello");

    let s2 = s1;

    println!("{s1}, world!"); // Error: borrow of moved value: `s1`

}

Error explanation:

s1  has been moved to s2 , so s1  is no longer valid and cannot be used.

You can clone s1  if you want a deep copy:

fn main() {

    let s1 = String::from("hello");

    let s2 = s1.clone();

    println!("s1 = {s1}, s2 = {s2}");

}

clone()  explicitly copies the heap data to create a full, independent copy.

When you see a call to clone , it indicates a potentially expensive operation, as it copies data on the heap.

Stack-Only Data: Copy

For simple scalar types like integers, copying is inexpensive and the data is stored completely on the stack. An

example:

fn main() {

    let x = 5;

    let y = x;

    println!("x = {x}, y = {y}");

}

In this case, x  is still valid after copying to y  because integers implement the Copy  trait, meaning they

are trivially copied instead of moved.
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Rust wonʼt allow you to implement Copy  on types that implement the Drop  trait, since they need special

cleanup.

Typical types that implement Copy :

All integer types like u32

bool

Floating-point types like f64

char

Tuples composed entirely of types that also implement Copy  (e.g., (i32, i32) )

Ownership and Functions

Passing a value to a function either moves or copies it, just like assignment. Example:

fn main() {

    let s = String::from("hello");

    takes_ownership(s); // s moves into the function

    let x = 5;

    makes_copy(x); // x is copied, not moved

    println!("{x}"); // Valid since x was copied

}

fn takes_ownership(some_string: String) {

    println!("{some_string}");

} // `some_string` is dropped here, cleaning heap memory

fn makes_copy(some_integer: i32) {

    println!("{some_integer}");

}

Using s  after takes_ownership(s)  would cause an error because it was moved into the function.

Return Values and Scope

Functions can return ownership of data:

fn main() {

    let s1 = gives_ownership(); // s1 takes ownership

    let s2 = String::from("hello");

    let s3 = takes_and_gives_back(s2); // s2 is moved, s3 takes ownership

}

fn gives_ownership() -> String {

    let some_string = String::from("yours");

    some_string // moved out

}

fn takes_and_gives_back(a_string: String) -> String {

    a_string // moved out

}
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Similarly, passing and returning ownership is routine, but Rust offers references to avoid transferring

ownership.

References

References allow a function to use a value without taking ownership, avoiding the need to transfer or clone

data. This is a core feature to work efficiently with data in Rust.
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References and Borrowing - The
Rust Programming Language

Introduction

The issue with the tuple code in Listing 4-5 is that we have to return the String  to the calling function so we

can still use the String  after the call to calculate_length , because the String  was moved into

calculate_length . Instead, we can provide a reference to the String  value. A reference is like a

pointer in that it s̓ an address we can follow to access the data stored at that address; that data is owned by

some other variable. Unlike a pointer, a reference is guaranteed to point to a valid value of a particular type for

the life of that reference.

Here is how you would define and use a calculate_length  function that has a reference to an object as a

parameter instead of taking ownership of the value:

fn main() {

    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{s1}' is {len}.");

}

fn calculate_length(s: &String) -> usize {

    s.len()

}

First, notice that all the tuple code in the variable declaration and the function return value is gone. Second,

note that we pass &s1  into calculate_length  and, in its definition, we take &String  rather than

String . These ampersands represent references, and they allow you to refer to some value without taking

ownership of it. Figure 4-6 depicts this concept.

Figure 4-6: A diagram of &String s  pointing at String

s1

Note: The opposite of referencing by using &  is dereferencing, which is accomplished with the dereference

operator, * . Weʼll see some uses of the dereference operator in Chapter 8 and discuss details of

dereferencing in Chapter 15.

Let's take a closer look at the function call:

fn main() {

    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{s1}' is {len}.");

}

fn calculate_length(s: &String) -> usize {

    s.len()

}
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The &s1  syntax lets us create a reference that refers to the value of s1  but does not own it. Because the

reference does not own it, the value it points to will not be dropped when the reference stops being used.

Similarly, the signature of the function uses &  to indicate that the type of the parameter s  is a reference.

The annotations clarify this:

fn main() {

    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{s1}' is {len}.");

}

fn calculate_length(s: &String) -> usize { // s is a reference to a String

    s.len()

} // Here, s goes out of scope. But because s does not have ownership of what it refer

The scope in which the variable s  is valid is the same as any function parameter s̓ scope, but the value

pointed to by the reference is not dropped when s  stops being used, because s  doesnʼt have ownership.

When functions have references as parameters instead of the actual values, we wonʼt need to return the values

in order to give back ownership, because we never had ownership.

We call the action of creating a reference borrowing. As in real life, if a person owns something, you can

borrow it from them. When youʼre done, you have to give it back. You donʼt own it.

Modifying Borrowed Data: Mutable References

What happens if we try to modify something weʼre borrowing? Try the code in Listing 4-6. Spoiler alert: it

doesnʼt work!

fn main() {

    let s = String::from("hello");

    change(&s);

}

fn change(some_string: &String) {

    some_string.push_str(", world");

}

Error:

error[E0596]: cannot borrow `*some_string` as mutable, as it is behind a `&` reference

 --> src/main.rs:8:5

  |

8 |     some_string.push_str(", world");

  |     ^^^^^^^^^^^ `some_string` is a `&` reference, so the data it refers to cannot 

  |

help: consider changing this to be a mutable reference

  |

7 | fn change(some_string: &mut String) {

  |                       +++

Just as variables are immutable by default, so are references. Weʼre not allowed to modify something we have

a reference to.

Mutable References
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We can fix the code from Listing 4-6 to allow us to modify a borrowed value with just a few small tweaks that

use, instead, a mutable reference:

fn main() {

    let mut s = String::from("hello");

    change(&mut s);

}

fn change(some_string: &mut String) {

    some_string.push_str(", world");

}

First, we change s  to be mut . Then, we create a mutable reference with &mut s  where we call the

change  function, and update the function signature to accept a mutable reference with some_string:

&mut String . This makes it clear that the change  function will mutate the value it borrows.

Restrictions on Mutable References

Mutable references have one big restriction: if you have a mutable reference to a value, you can have no other

references to that value. This code that attempts to create two mutable references to s  will fail:

fn main() {

    let mut s = String::from("hello");

    let r1 = &mut s;

    let r2 = &mut s;

    println!("{}, {}", r1, r2);

}

Error:

error[E0499]: cannot borrow `s` as mutable more than once at a time

 --> src/main.rs:5:14

  |

4 |     let r1 = &mut s;

  |              ------ first mutable borrow occurs here

5 |     let r2 = &mut s;

  |              ^^^^^^ second mutable borrow occurs here

6 |

7 |     println!("{}, {}", r1, r2);

  |                        -- first borrow later used here

This restriction prevents multiple mutable references at the same time, which allows Rust to prevent data

races at compile time. Data races can occur when:

Two or more pointers access the same data at the same time.

At least one of the pointers is used to write to the data.

There s̓ no mechanism to synchronize access to the data.

Using Scopes to Manage References

You can create a new scope with curly brackets to allow multiple mutable references at different times:

fn main() {

    let mut s = String::from("hello");
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    {

        let r1 = &mut s;

    } // r1 goes out of scope here, so we can make a new reference with no problems.

    let r2 = &mut s;

}

Combining Mutable and Immutable References

Rust enforces similar rules for combining mutable and immutable references. The following code results in

an error:

fn main() {

    let mut s = String::from("hello");

    let r1 = &s; // no problem

    let r2 = &s; // no problem

    let r3 = &mut s; // BIG PROBLEM

    println!("{}, {}, and {}", r1, r2, r3);

}

Error:

error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable

 --> src/main.rs:6:14

  |

4 |     let r1 = &s; // no problem

  |              -- immutable borrow occurs here

5 |     let r2 = &s; // no problem

6 |     let r3 = &mut s; // BIG PROBLEM

  |              ^^^^^^ mutable borrow occurs here

7 |

8 |     println!("{}, {}, and {}", r1, r2, r3);

  |                                -- immutable borrow later used here

You cannot have a mutable reference while immutable references exist. Users of an immutable reference donʼt

expect the value to change unexpectedly. Multiple immutable references are allowed, because they only read

the data.

Scope and Borrowing

The scope of a reference starts where it is introduced and continues through the last time that reference is

used. For example:

fn main() {

    let mut s = String::from("hello");

    let r1 = &s; // no problem

    let r2 = &s; // no problem

    println!("{r1} and {r2}");

    // r1 and r2 are no longer used after this point

    let r3 = &mut s; // no problem
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    println!("{r3}");

}

The immutable references r1  and r2  end after the println! , before the mutable reference r3  is

created. Since their scopes do not overlap, this code is allowed.

Conclusion

Borrowing helps prevent data races and dangling references. Rust enforces rules that:

You can have either one mutable reference or any number of immutable references at a time.

References must always be valid.

Next, we will discuss slices.
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The Slice Type - The Rust
Programming Language

Overview

The Rust Programming Language

The Slice Type

Slices let you reference a contiguous sequence of elements in a collection rather than the whole collection. A

slice is a kind of reference, so it does not have ownership.

Here s̓ a small programming problem: write a function that takes a string of words separated by spaces and

returns the first word it finds in that string. If the function doesnʼt find a space in the string, the whole string

must be one word, so the entire string should be returned.

Let s̓ work through how we d̓ write the signature of this function without using slices, to understand the

problem that slices will solve:

fn first_word(s: &String) -> ?

The first_word  function has a &String  as a parameter. We donʼt need ownership, so this is fine. (In

idiomatic Rust, functions do not take ownership of their arguments unless they need to, and the reasons for

that will become clear as we keep going!) But what should we return? We donʼt really have a way to talk about

part of a string. However, we could return the index of the end of the word, indicated by a space. Let s̓ try that,

as shown in Listing 4-7.

Listing 4-7: The first_word  function that returns a byte index value into the String  parameter

fn first_word(s: &String) -> usize {

    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {

        if item == b' ' {

            return i;

        }

    }

    s.len()

}

Because we need to go through the String  element by element and check whether a value is a space, weʼll

convert our String  to an array of bytes using the as_bytes  method.

Next, we create an iterator over the array of bytes using the iter  method:

fn first_word(s: &String) -> usize {

    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {

        if item == b' ' {
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            return i;

        }

    }

    s.len()

}

Weʼll discuss iterators in more detail in Chapter 13. For now, know that iter  is a method that returns each

element in a collection and that enumerate  wraps the result of iter  and returns each element as part of

a tuple. The first element of the tuple returned from enumerate  is the index, and the second element is a

reference to the element. This is a bit more convenient than calculating the index ourselves.

Because the enumerate  method returns a tuple, we can use patterns to destructure that tuple. In the for

loop, we specify a pattern that has i  for the index in the tuple and &item  for the single byte in the tuple.

Because we get a reference to the element from .iter().enumerate() , we use &  in the pattern.

Inside the for  loop, we search for the byte that represents the space using the byte literal syntax. If we find

a space, we return the position. Otherwise, we return the length of the string by using s.len() .

This approach gives us a way to find the index of the end of the first word in the string, but there s̓ a problem.

Weʼre returning a usize  on its own, but it s̓ only a meaningful number in the context of the &String . In

other words, because it s̓ a separate value from the String , there s̓ no guarantee that it will still be valid in

the future.

Consider the program in Listing 4-8 that uses the first_word  function from Listing 4-7.

Listing 4-8: Storing the result from calling the first_word  function and then changing the String  contents

fn first_word(s: &String) -> usize {

    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {

        if item == b' ' {

            return i;

        }

    }

    s.len()

}

fn main() {

    let mut s = String::from("hello world");

    let word = first_word(&s); // word will get the value 5

    s.clear(); // this empties the String, making it equal to ""

    // `word` still has the value `5` here, but `s` no longer has any content

    // that we could meaningfully use with the value `5`, so `word` is now

    // totally invalid!

}

This program compiles without any errors, but the value in word  becomes invalid after s.clear() .

Managing such indices manually is tedious and error-prone. Rust provides string slices to address this

problem.

String Slices
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A string slice is a reference to part of a String , and it looks like this:

fn main() {

    let s = String::from("hello world");

    let hello = &s[0..5];

    let world = &s[6..11];

}

Rather than a reference to the entire String , hello  is a reference to a portion of the String ,

specified in the extra [0..5]  part. We create slices using a range within brackets by specifying

[starting_index..ending_index] .

starting_index : position of the first byte

ending_index : position of one more than the last byte

Internally, the slice data structure stores the starting position and the length of the slice, which corresponds to

ending_index  minus starting_index . For example, let world = &s[6..11];  contains a

pointer to the byte at index 6 of s  with a length of 5.

You can drop the starting or ending index if you want to start from the beginning or go to the end:

let slice1 = &s[..2];    // same as &s[0..2]

let slice2 = &s[3..];    // same as &s[3..s.len()]

let slice3 = &s[..];     // the whole string

Note: String slice range indices must occur at valid UTF-8 character boundaries; otherwise, a runtime error

occurs.

Returning Slices

Let s̓ rewrite first_word  to return a slice of the string:

fn first_word(s: &String) -> &str {

    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {

        if item == b' ' {

            return &s[0..i];

        }

    }

    &s[..]

}

Now, when we call first_word , we get a reference tied to the data, preventing bugs where the string is

modified after obtaining a part of it.

Other Slices

Slices are not limited to strings. Arrays can also be sliced:

fn main() {

    let a = [1, 2, 3, 4, 5];

    let slice = &a[1..3];
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    assert_eq!(slice, &[2, 3]);

}

This slice has type &[i32]  and works similarly, referring to part of an array.

Summary

The concepts of ownership, borrowing, and slices ensure memory safety in Rust at compile time. Rust's

ownership model manages resources efficiently, preventing many common bugs. This foundation enables

writing safe and performant systems programming.

Continue to Chapter 5 for grouping pieces of data in a struct .
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Method Syntax - The Rust
Programming Language

Overview

Methods are similar to functions: we declare them with the fn  keyword and a name, they can have

parameters and a return value, and they contain some code that s̓ run when the method is called from

somewhere else. Unlike functions, methods are defined within the context of a struct (or an enum or a trait

object, which we cover in Chapter 6 and Chapter 18, respectively). The first parameter is always self , which

represents the instance of the struct the method is being called on.

Defining Methods

Let s̓ change the area  function that has a Rectangle  instance as a parameter and instead make an

area  method defined on the Rectangle  struct, as shown in Listing 5-13.

Filename: src/main.rs

#[derive(Debug)]

struct Rectangle {

    width: u32,

    height: u32,

}

impl Rectangle {

    fn area(&self) -> u32 {

        self.width * self.height

    }

}

fn main() {

    let rect1 = Rectangle {

        width: 30,

        height: 50,

    };

    println!(

        "The area of the rectangle is {} square pixels.",

        rect1.area()

    );

}

To define the function within the Rectangle  context, we start an impl  block for Rectangle .

Everything within this block will be associated with the Rectangle  type. We move the area  function into

this block and change the first parameter to &self . In main , instead of calling the function with

rect1.area() , we use method syntax by adding a dot followed by the method name and parentheses.

Note: In the signature for area , &self  is short for self: &Self . Within an impl  block, the type

Self  is an alias for the type the block is for. Methods must have a parameter named self  of type Self .

Rust allows abbreviating this with just self . The &  indicates that the method borrows the instance

immutably.
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Choosing Borrowing or Ownership

Methods can take ownership of self , borrow self  immutably ( &self ), or borrow mutably ( &mut

self ). For example, using &self  allows read-only access, while &mut self  permits modification.

The main reasons for using methods instead of functions are organization and clarity—grouping capabilities

of a type in one impl  block.

Methods with Same Name as Fields

You can define a method with the same name as a field, for example:

#[derive(Debug)]

struct Rectangle {

    width: u32,

    height: u32,

}

impl Rectangle {

    fn width(&self) -> bool {

        self.width > 0

    }

}

fn main() {

    let rect1 = Rectangle {

        width: 30,

        height: 50,

    };

    if rect1.width() {

        println!("The rectangle has a nonzero width; it is {}", rect1.width);

    }

}

When called with parentheses ( rect1.width() ), Rust interprets it as a method; without parentheses

( rect1.width ), it treats it as a field.

The ->  Operator in Methods

In C/C++, you'd use .  or ->  to call methods, depending on whether you're using an object or a pointer.

Rust simplifies this with automatic referencing and dereferencing. When calling object.something() ,

Rust adds & , &mut , or *  as needed to match the method's signature.

Example:

#[derive(Debug, Copy, Clone)]

struct Point {

    x: f64,

    y: f64,

}

impl Point {

    fn distance(&self, other: &Point) -> f64 {

        let x_squared = f64::powi(other.x - self.x, 2);
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        let y_squared = f64::powi(other.y - self.y, 2);

        f64::sqrt(x_squared + y_squared)

    }

}

let p1 = Point { x: 0.0, y: 0.0 };

let p2 = Point { x: 5.0, y: 6.5 };

p1.distance(&p2);    // calls with automatic referencing

(&p1).distance(&p2); // equivalent

Methods with More Parameters

You can add additional parameters after self . For example, can_hold  compares two rectangles:

impl Rectangle {

    fn can_hold(&self, other: &Rectangle) -> bool {

        self.width > other.width && self.height > other.height

    }

}

Example usage:

fn main() {

    let rect1 = Rectangle { width: 30, height: 50 };

    let rect2 = Rectangle { width: 10, height: 40 };

    let rect3 = Rectangle { width: 60, height: 45 };

    println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));

    println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));

}

Associated Functions

Functions defined within an impl  block that donʼt take self  are called associated functions. They often

serve as constructors, e.g., Rectangle::new() .

For example, a square  associated function:

impl Rectangle {

    fn square(size: u32) -> Self {

        Self {

            width: size,

            height: size,

        }

    }

}

fn main() {

    let sq = Rectangle::square(3);

}

The Self  keyword is an alias for the type ( Rectangle ). Call it using the ::  syntax.
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Multiple impl  Blocks

A struct can have multiple impl  blocks. For example:

#[derive(Debug)]

struct Rectangle {

    width: u32,

    height: u32,

}

impl Rectangle {

    fn area(&self) -> u32 {

        self.width * self.height

    }

}

impl Rectangle {

    fn can_hold(&self, other: &Rectangle) -> bool {

        self.width > other.width && self.height > other.height

    }

}

This is valid and sometimes helpful for organizing code.

Summary

Structs allow creation of custom types that encapsulate meaningful data. In impl  blocks, you can define

functions and methods to specify their behavior. Methods organize functionality related to the type, often with

the same name as fields for convenience. Additionally, associated functions act as constructors or utility

functions not tied to a specific instance.

Next Topic

Let's explore Rust's enum feature to add more tools to your toolbox.
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The match Control Flow Construct -
The Rust Programming Language

The match  Control Flow Construct

Rust has an extremely powerful control flow construct called match  that allows you to compare a value

against a series of patterns and then execute code based on which pattern matches. Patterns can be made up

of literal values, variable names, wildcards, and many other things; Chapter 19 covers all the different kinds of

patterns and what they do. The power of match  comes from the expressiveness of the patterns and the fact

that the compiler confirms that all possible cases are handled.

Think of a match  expression as being like a coin-sorting machine: coins slide down a track with variously

sized holes along it, and each coin falls through the first hole it encounters that it fits into. In the same way,

values go through each pattern in a match , and at the first pattern the value “fits,” the value falls into the

associated code block to be used during execution.

Speaking of coins, let s̓ use them as an example using match ! We can write a function that takes an

unknown US coin and, in a similar way as the counting machine, determines which coin it is and returns its

value in cents, as shown in Listing 6-3.

Listing 6-3: An enum and a match  expression that has the variants of the enum as its patterns

enum Coin {

    Penny,

    Nickel,

    Dime,

    Quarter,

}

fn value_in_cents(coin: Coin) -> u8 {

    match coin {

        Coin::Penny => 1,

        Coin::Nickel => 5,

        Coin::Dime => 10,

        Coin::Quarter => 25,

    }

}

fn main() {}

Let s̓ break down the match  in the value_in_cents  function. First, we list the match  keyword

followed by an expression, which in this case is the value coin . This seems very similar to a conditional

expression used with if , but there s̓ a big difference: with if , the condition needs to evaluate to a Boolean

value, but here it can be any type. The type of coin  in this example is the Coin  enum that we defined on

the first line.

Next are the match  arms. An arm has two parts: a pattern and some code. The first arm here has a pattern

that is the value Coin::Penny  and then the =>  operator that separates the pattern and the code to run.

The code in this case is just the value 1 . Each arm is separated from the next with a comma.

When the match  expression executes, it compares the resultant value against the pattern of each arm, in

order. If a pattern matches the value, the code associated with that pattern is executed. If that pattern doesnʼt
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match the value, execution continues to the next arm, much as in a coin-sorting machine. We can have as

many arms as we need: in Listing 6-3, our match  has four arms.

The code associated with each arm is an expression, and the resultant value of the expression in the matching

arm is the value that gets returned for the entire match  expression.

We donʼt typically use curly brackets if the match arm code is short, as it is in Listing 6-3 where each arm just

returns a value. If you want to run multiple lines of code in a match arm, you must use curly brackets, and the

comma following the arm is then optional. For example, the following code prints “Lucky penny!” every time

the method is called with a Coin::Penny , but still returns the last value of the block, 1 :

enum Coin {

    Penny,

    Nickel,

    Dime,

    Quarter,

}

fn value_in_cents(coin: Coin) -> u8 {

    match coin {

        Coin::Penny => {

            println!("Lucky penny!");

            1

        }

        Coin::Nickel => 5,

        Coin::Dime => 10,

        Coin::Quarter => 25,

    }

}

fn main() {}

Patterns That Bind to Values

Another useful feature of match arms is that they can bind to the parts of the values that match the pattern.

This is how we can extract values out of enum variants.

As an example, let s̓ change one of our enum variants to hold data inside it. From 1999 through 2008, the

United States minted quarters with different designs for each of the 50 states on one side. No other coins got

state designs, so only quarters have this extra value. We can add this information to our enum  by changing

the Quarter  variant to include a UsState  value stored inside it, which weʼve done in Listing 6-4.

Listing 6-4: A Coin  enum in which the Quarter  variant also holds a UsState  value

#[derive(Debug)] // so we can inspect the state in a minute

enum UsState {

    Alabama,

    Alaska,

    // --snip--

}

enum Coin {

    Penny,

    Nickel,

    Dime,

    Quarter(UsState),
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}

fn main() {}

Let s̓ imagine that a friend is trying to collect all 50 state quarters. While we sort our loose change by coin type,

weʼll also call out the name of the state associated with each quarter so that if it s̓ one our friend doesnʼt have,

they can add it to their collection.

In the match expression for this code, we add a variable called state  to the pattern that matches values of

the variant Coin::Quarter . When a Coin::Quarter  matches, the state  variable will bind to the

value of that quarter s̓ state. Then we can use state  in the code for that arm, like so:

#[derive(Debug)]

enum UsState {

    Alabama,

    Alaska,

    // --snip--

}

enum Coin {

    Penny,

    Nickel,

    Dime,

    Quarter(UsState),

}

fn value_in_cents(coin: Coin) -> u8 {

    match coin {

        Coin::Penny => 1,

        Coin::Nickel => 5,

        Coin::Dime => 10,

        Coin::Quarter(state) => {

            println!("State quarter from {:?}!", state);

            25

        }

    }

}

fn main() {

    value_in_cents(Coin::Quarter(UsState::Alaska));

}

If we were to call value_in_cents(Coin::Quarter(UsState::Alaska)) , coin  would be

Coin::Quarter(UsState::Alaska) . When we compare that value with each of the match arms, none

of them match until we reach Coin::Quarter(state) . At that point, the binding for state  will be the

value UsState::Alaska . We can then use that binding in the println!  expression, thus getting the

inner state value out of the Coin  enum variant for Quarter .

Matching with Option<T>

In the previous section, we wanted to get the inner T  value out of the Some  case when using

Option<T> ; we can also handle Option<T>  using match , as we did with the Coin  enum! Instead of

comparing coins, weʼll compare the variants of Option<T> , but the way the match  expression works

remains the same.
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Let s̓ say we want to write a function that takes an Option<i32>  and, if there s̓ a value inside, adds 1 to that

value. If there isnʼt a value inside, the function should return the None  value and not attempt to perform any

operations.

This function is very easy to write, thanks to match , and will look like Listing 6-5.

Listing 6-5: A function that uses a match  expression on an Option<i32>

fn main() {

    fn plus_one(x: Option<i32>) -> Option<i32> {

        match x {

            None => None,

            Some(i) => Some(i + 1),

        }

    }

    let five = Some(5);

    let six = plus_one(five);

    let none = plus_one(None);

}

Let s̓ examine the first execution of plus_one  in more detail. When we call plus_one(five) , the

variable x  in the body of plus_one  will have the value Some(5) . We then compare that against each

match arm:

The Some(5)  value doesnʼt match the pattern None , so we continue to the next arm:

It matches! There s̓ no value to add to, so the program stops and returns the None  value on the right side of

=> . Because the first arm matched, no other arms are compared.

Combining match  and enums is useful in many situations. Youʼll see this pattern a lot in Rust code: match

against an enum, bind a variable to the data inside, and then execute code based on it. It s̓ a bit tricky at first,

but once you get used to it, youʼll wish you had it in all languages. It s̓ consistently a user favorite.

Matches Are Exhaustive

There s̓ one other aspect of match  we need to discuss: the armsʼ patterns must cover all possibilities.

Consider this version of our plus_one  function, which has a bug and wonʼt compile:

fn main() {

    fn plus_one(x: Option<i32>) -> Option<i32> {

        match x {

            Some(i) => Some(i + 1),

        }

    }

    let five = Some(5);

    let six = plus_one(five);

    let none = plus_one(None);

}

We didnʼt handle the None  case, so this code will cause a bug. Luckily, it s̓ a bug Rust knows how to catch. If

we try to compile this code, weʼll get this error:

error[E0004]: non-exhaustive patterns: `None` not covered

 --> src/main.rs:3:15

  |

3 |         match x {
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  |               ^ pattern `None` not covered

  |

note: `Option<i32>` defined here

 --> /rustc/4eb161250e340c8f48f66e2b929ef4a5bed7c181/library/core/src/option.rs:572:1

 --> /rustc/4eb161250e340c8f48f66e2b929ef4a5bed7c181/library/core/src/option.rs:576:5

  |

  = note: `Option<i32>` pattern is not exhaustively matched

  = note: the matched value is of type `Option<i32>`

help: ensure that all possible cases are being handled by adding a match arm with a wi

  |

4 |         match x {

5 |             Some(i) => Some(i + 1),

6 |             None => todo!(),

7 |         }

Rust knows that we didnʼt cover every possible case, and even knows which pattern we forgot! Matches in Rust

are exhaustive: we must exhaust every last possibility in order for the code to be valid. Especially in the case of

Option<T> , when Rust prevents us from forgetting to explicitly handle the None  case, it protects us from

assuming that we have a value when we might have null, thus making the billion-dollar mistake discussed

earlier impossible.

Catch-All Patterns and the _  Placeholder

Using enums, we can also take special actions for a few particular values, but for all other values take one

default action. Imagine weʼre implementing a game where, if you roll a 3 on a dice roll, your player doesnʼt

move, but instead gets a new fancy hat. If you roll a 7, your player loses a fancy hat. For all other values, your

player moves that number of spaces on the game board. Here s̓ a match  that implements that logic, with the

result of the dice roll hardcoded rather than a random value, and all other logic represented by functions

without bodies because actually implementing them is out of scope for this example:

fn main() {

    let dice_roll = 9;

    match dice_roll {

        3 => add_fancy_hat(),

        7 => remove_fancy_hat(),

        other => move_player(other),

    }

    fn add_fancy_hat() {}

    fn remove_fancy_hat() {}

    fn move_player(num_spaces: u8) {}

}

For the first two arms, the patterns are the literal values 3  and 7 . For the last arm that covers every other

possible value, the pattern is the variable weʼve chosen to name other . The code that runs for the other

arm uses the variable by passing it to the move_player  function.

This code compiles, even though we havenʼt listed all the possible values a u8  can have, because the last

pattern will match all values not specifically listed. This catch-all pattern meets the requirement that match

must be exhaustive. Note that we have to put the catch-all arm last because the patterns are evaluated in order.

If we put the catch-all arm earlier, the other arms would never run, so Rust will warn us if we add arms after a

catch-all!

Rust also has a pattern we can use when we want a catch-all but donʼt want to use the value in the catch-all

pattern: _  is a special pattern that matches any value and does not bind to that value. This tells Rust we

arenʼt going to use the value, so Rust wonʼt warn us about an unused variable.
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Let s̓ change the rules of the game: now, if you roll anything other than a 3 or 7, you must roll again. We no

longer need to use the catch-all value, so we can change our code to use _  instead of the variable named

other :

fn main() {

    let dice_roll = 9;

    match dice_roll {

        3 => add_fancy_hat(),

        7 => remove_fancy_hat(),

        _ => reroll(),

    }

    fn add_fancy_hat() {}

    fn remove_fancy_hat() {}

    fn reroll() {}

}

This example also meets the exhaustiveness requirement because weʼre explicitly ignoring all other values in

the last arm; we havenʼt forgotten anything.

Finally, weʼll change the rules of the game one more time so that nothing else happens on your turn if you roll

anything other than a 3 or a 7. We can express that by using the unit value (the empty tuple type we mentioned

in “The Tuple Type” section) as the code that goes with the _  arm:

fn main() {

    let dice_roll = 9;

    match dice_roll {

        3 => add_fancy_hat(),

        7 => remove_fancy_hat(),

        _ => (),

    }

    fn add_fancy_hat() {}

    fn remove_fancy_hat() {}

}

Here, weʼre telling Rust explicitly that we arenʼt going to use any other value that doesnʼt match a pattern in an

earlier arm, and we donʼt want to run any code in this case.

There s̓ more about patterns and matching that weʼll cover in Chapter 19. For now, weʼre going to move on to

the if let  syntax, which can be useful in situations where the match  expression is a bit wordy.
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Concise Control Flow with if let

and let else  - The Rust
Programming Language
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Packages and Crates - The Rust
Programming Language

Overview

The first parts of the module system weʼll cover are packages and crates.

A crate is the smallest amount of code that the Rust compiler considers at a time. Even if you run rustc

rather than cargo  and pass a single source code file (as we did all the way back in “Writing and Running a

Rust Program” in Chapter 1), the compiler considers that file to be a crate. Crates can contain modules, and

the modules may be defined in other files that get compiled with the crate, as weʼll see in the coming sections.

A crate can come in one of two forms: a binary crate or a library crate.

Binary crates are programs you can compile to an executable that you can run, such as a command line

program or a server. Each must have a function called main  that defines what happens when the executable

runs. All the crates weʼve created so far have been binary crates.

Library crates donʼt have a main  function, and they donʼt compile to an executable. Instead, they define

functionality intended to be shared with multiple projects. For example, the rand  crate we used in Chapter

2 provides functionality that generates random numbers.

Most of the time when Rustaceans say “crate,” they mean library crate, and they use “crate” interchangeably

with the general programming concept of a “library.”

Crate Root

The crate root is a source file that the Rust compiler starts from and makes up the root module of your crate

(weʼll explain modules in depth in “Defining Modules to Control Scope and Privacy”).

Packages

A package is a bundle of one or more crates that provides a set of functionality.

A package contains a Cargo.toml  file that describes how to build those crates. Cargo is actually a package

that contains the binary crate for the command line tool youʼve been using to build your code. The package

also contains a library crate that the binary crate depends on. Other projects can depend on the Cargo library

crate to use the same logic the Cargo command line tool uses.

A package can contain as many binary crates as you like, but at most only one library crate.

A package must contain at least one crate, whether that s̓ a library or binary crate.

Creating a Package

Let s̓ walk through what happens when we create a package. First we enter the command:

cargo new my-project

which outputs:

Created binary (application) `my-project` package

In the project directory, there s̓ a Cargo.toml  file, giving us a package.

There s̓ also an src  directory that contains main.rs . Open Cargo.toml  in your text editor, and note

there s̓ no mention of src/main.rs . Cargo follows a convention that src/main.rs  is the crate root of a
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binary crate with the same name as the package.

Likewise, Cargo knows that if the package directory contains src/lib.rs , the package contains a library

crate with the same name as the package, and src/lib.rs  is its crate root. Cargo passes the crate root files

to rustc  to build the library or binary.

Here, we have a package that only contains src/main.rs , meaning it only contains a binary crate named

my-project .

If a package contains src/main.rs  and src/lib.rs , it has two crates: a binary and a library, both with

the same name as the package.

A package can have multiple binary crates by placing files in the src/bin  directory: each file will be a

separate binary crate.
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Paths for Referring to an Item in the
Module Tree - The Rust
Programming Language

Overview

To show Rust where to find an item in a module tree, we use a path similarly to navigating a filesystem. To call

a function, we need its path.

Types of Paths

Absolute path: The full path starting from a crate root; for external crates, begins with the crate name,

and for the current crate, starts with crate .

Relative path: Starts from the current module, using self , super , or an identifier within the

current module.

Both follow with one or more identifiers separated by :: .

Example: Calling add_to_waitlist

Listing 7-3 demonstrates calling add_to_waitlist  using absolute and relative paths.

mod front_of_house {

    mod hosting {

        fn add_to_waitlist() {}

    }

}

pub fn eat_at_restaurant() {

    // Absolute path

    crate::front_of_house::hosting::add_to_waitlist();

    // Relative path

    front_of_house::hosting::add_to_waitlist();

}

Explanation:

Absolute path starts with crate  and drills down to add_to_waitlist .

Relative path starts within the current module, referencing front_of_house .

Access Restrictions and Privacy Rules

Attempting to compile the above results in errors:

error[E0603]: module `hosting` is private

...
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note: the module `hosting` is defined here

Modules and items are private by default.

To access items in child modules, the parent module must declare them as pub .

Making Modules and Items Public

Declare modules as public

mod front_of_house {

    pub mod hosting {

        fn add_to_waitlist() {}

    }

}

pub fn eat_at_restaurant() {

    // Absolute path with pub module

    crate::front_of_house::hosting::add_to_waitlist();

    // Relative path

    front_of_house::hosting::add_to_waitlist();

}

Error persists because functions are still private

To fix this, declare the function as pub :

mod front_of_house {

    pub mod hosting {

        pub fn add_to_waitlist() {}

    }

}

Now, the function can be called outside its module.

Module and Function Visibility

Declaring a module pub  makes the module accessible from outside.

Declaring a function pub  within a pub  module makes it accessible.

pub  on a module does not automatically make its contents public; each item must be explicitly made

public.

Using pub  to Expose Paths

Example:

mod front_of_house {

    pub mod hosting {

        pub fn add_to_waitlist() {}

    }

}
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pub fn eat_at_restaurant() {

    crate::front_of_house::hosting::add_to_waitlist();

    front_of_house::hosting::add_to_waitlist();

}

Result: Both paths work due to pub  declarations.

Absolute vs. Relative Paths

Absolute path: Starts from crate , the root of the module tree.

Relative path: Begins within the current module, using front_of_house .

Key points:

If the modules are pub , you can access them from outside.

pub fn  allows functions to be called from other modules.

Making modules or functions private restricts access.

Privacy Details

Items are private by default.

pub  makes modules, functions, structs, or enums accessible from outside.

Items within a module are private unless declared pub .

Additional Example: pub  on Functions and
Structs

Making a function public:

pub fn add_to_waitlist() {}

Making a struct pub , but with private fields:

pub struct Breakfast {

    pub toast: String,

    seasonal_fruit: String,

}

toast  can be accessed and modified externally.

seasonal_fruit  remains private.

Making enum variants public:

pub enum Appetizer {

    Soup,

    Salad,

}

All variants are automatically public if enum is pub .
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Summary

Use pub  to expose modules, functions, structs, and enum variants.

Items are private by default.

Proper use of pub  and module organization helps control access and encapsulation.

Next Topic

The use  keyword for bringing paths into scope.

Combining pub  with use  to organize public APIs.
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Separating Modules into Different
Files - The Rust Programming
Language

[Content omitted for brevity; the rest of the document continues with detailed explanations about Rust

modules and file organization.]

Summary

Rust lets you split a package into multiple crates and a crate into modules so you can refer to items defined in

one module from another module. You can do this by specifying absolute or relative paths. These paths can be

brought into scope with a use  statement so you can use a shorter path for multiple uses of the item in that

scope. Module code is private by default, but you can make definitions public by adding the pub  keyword.

In the next chapter, weʼll look at some collection data structures in the standard library that you can use in

your neatly organized code.
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