
Mastering SvelteKit: A
Comprehensive Guide

This book provides an in-depth exploration of SvelteKit, a powerful framework for building fast, dynamic web

applications. Covering core concepts, advanced techniques, and best practices, it is designed to help

developers of all levels become proficient in leveraging SvelteKit for their projects.

1

Table of Contents

Getting Started

Introduction

Creating a Project

Project Types

Project Structure

Web Standards

Core Concepts

Routing

Loading Data

Form Actions

Page Options

State Management

Build and Deploy

Building Your App

Adapters

Zero-config Deployments

Node Servers

Static Site Generation

Single-page Apps

Cloudflare

Cloudflare Workers

Netlify

Vercel

Writing Adapters

Advanced

Advanced Routing

Hooks

Errors

Link Options

Service Workers

Server-only Modules

Snapshots

Shallow Routing

Packaging

2

https://svelte.dev/docs/kit/introduction
https://svelte.dev/docs/kit/creating-a-project
https://svelte.dev/docs/kit/project-types
https://svelte.dev/docs/kit/project-structure
https://svelte.dev/docs/kit/web-standards
https://svelte.dev/docs/kit/routing
https://svelte.dev/docs/kit/loading-data
https://svelte.dev/docs/kit/form-actions
https://svelte.dev/docs/kit/page-options
https://svelte.dev/docs/kit/state-management
https://svelte.dev/docs/kit/building-your-app
https://svelte.dev/docs/kit/adapters
https://svelte.dev/docs/kit/zero-config-deployments
https://svelte.dev/docs/kit/node-servers
https://svelte.dev/docs/kit/static-site-generation
https://svelte.dev/docs/kit/single-page-apps
https://svelte.dev/docs/kit/cloudflare
https://svelte.dev/docs/kit/cloudflare-workers
https://svelte.dev/docs/kit/netlify
https://svelte.dev/docs/kit/vercel
https://svelte.dev/docs/kit/writing-adapters
https://svelte.dev/docs/kit/advanced-routing
https://svelte.dev/docs/kit/hooks
https://svelte.dev/docs/kit/errors
https://svelte.dev/docs/kit/link-options
https://svelte.dev/docs/kit/service-workers
https://svelte.dev/docs/kit/server-only-modules
https://svelte.dev/docs/kit/snapshots
https://svelte.dev/docs/kit/shallow-routing
https://svelte.dev/docs/kit/packaging

SvelteKit Documentation

Introduction

On this page

Introduction

Before we begin

What is SvelteKit?

What is Svelte?

SvelteKit vs Svelte

Before we begin

If youʼre new to Svelte or SvelteKit we recommend checking out the interactive tutorial.

If you get stuck, reach out for help in the Discord chatroom.

What is SvelteKit?

SvelteKit is a framework for rapidly developing robust, performant web applications using Svelte. If youʼre

coming from React, SvelteKit is similar to Next. If youʼre coming from Vue, SvelteKit is similar to Nuxt.

To learn more about the kinds of applications you can build with SvelteKit, see the documentation regarding

project types.

What is Svelte?

In short, Svelte is a way of writing user interface components — like a navigation bar, comment section, or

contact form — that users see and interact with in their browsers. The Svelte compiler converts your

components to JavaScript that can be run to render the HTML for the page and to CSS that styles the page. You

donʼt need to know Svelte to understand the rest of this guide, but it will help. If youd̓ like to learn more, check

out the Svelte tutorial.

SvelteKit vs Svelte

Svelte renders UI components. You can compose these components and render an entire page with just Svelte,

but you need more than just Svelte to write an entire app.

SvelteKit helps you build web apps while following modern best practices and providing solutions to common

development challenges. It offers everything from basic functionalities — like a router that updates your UI

when a link is clicked — to more advanced capabilities. Its extensive list of features includes build

optimizations to load only the minimal required code; offline support; preloading pages before user

navigation; configurable rendering to handle different parts of your app on the server via SSR, in the browser

through client-side rendering, or at build-time with prerendering; image optimization; and much more.

Building an app with all the modern best practices is fiendishly complicated, but SvelteKit does all the boring

stuff for you so that you can get on with the creative part.

3

https://yourdomain.com/docs/kit/introduction
https://yourdomain.com/tutorial/kit
https://yourdomain.com/chat
https://yourdomain.com/docs/kit/project-types
https://yourdomain.com/docs/kit/project-types
https://yourdomain.com/tutorial
https://yourdomain.com/docs/kit/glossary#Routing
https://vitejs.dev/guide/features.html#build-optimizations
https://vitejs.dev/guide/features.html#build-optimizations
https://yourdomain.com/docs/kit/service-workers
https://yourdomain.com/docs/kit/link-options#data-sveltekit-preload-data
https://yourdomain.com/docs/kit/page-options
https://yourdomain.com/docs/kit/glossary#SSR
https://yourdomain.com/docs/kit/glossary#CSR
https://yourdomain.com/docs/kit/glossary#Prerendering
https://yourdomain.com/docs/kit/images

It reflects changes to your code in the browser instantly to provide a lightning-fast and feature-rich

development experience by leveraging Vite with a Svelte plugin to do Hot Module Replacement (HMR).

Edit this page on GitHub

llms.txt

Navigation

Creating a project

4

https://vitejs.dev/
https://github.com/sveltejs/vite-plugin-svelte
https://github.com/sveltejs/vite-plugin-svelte/blob/main/docs/config.md#hot
https://github.com/sveltejs/kit/edit/main/documentation/docs/10-getting-started/10-introduction.md
https://yourdomain.com/docs/kit/introduction/llms.txt
https://yourdomain.com/docs/kit/creating-a-project

Hello

5

Hello

Hello

Hello

Hello

Hello

Hello

6

Project structure • Docs • Svelte
Skip to main content

Docs

Docs

Svelte SvelteKit CLI

Tutorial Playground Blog

Getting started

Introduction

Creating a project

Project types

Project structure

Web standards

Core concepts

Routing

Loading data

Form actions

Page options

State management

Build and deploy

Building your app

Adapters

Zero-config deployments

Node servers

Static site generation

Single-page apps

Cloudflare

Cloudflare Workers

Netlify

Vercel

Writing adapters

Advanced

Advanced routing

Hooks

Errors

Link options

Service workers

Server-only modules

Snapshots

Shallow routing

Packaging

Best practices

Auth

7

Performance

Icons

Images

Accessibility

SEO

Appendix

Frequently asked questions

Integrations

Breakpoint Debugging

Migrating to SvelteKit v2

Migrating from Sapper

Additional resources

Glossary

Reference

@sveltejs/kit

@sveltejs/kit/hooks

@sveltejs/kit/node/polyfills

@sveltejs/kit/node

@sveltejs/kit/vite

$app/environment

$app/forms

$app/navigation

$app/paths

$app/server

$app/state

$app/stores

$env/dynamic/private

$env/dynamic/public

$env/static/private

$env/static/public

$lib

$service-worker

Configuration

Command Line Interface

Types

SvelteKitGetting started

Project structure

On this page

Project structure

Project files

Other files

A typical SvelteKit project looks like this:

                  ```plaintext

                  my-project/

                  ├ src/

                  │ ├ lib/

8



                  │ │ ├ server/

                  │ │ │ └ [your server-only lib files]

                  │ │ └ [your lib files]

                  │ ├ params/

                  │ │ └ [your param matchers]

                  │ ├ routes/

                  │ │ └ [your routes]

                  │ ├ app.html

                  │ ├ error.html

                  │ ├ hooks.client.js

                  │ ├ hooks.server.js

                  │ └ service-worker.js

                  ├ static/

                  │ └ [your static assets]

                  ├ tests/

                  │ └ [your tests]

                  ├ package.json

                  ├ svelte.config.js

                  ├ tsconfig.json

                  └ vite.config.js

                  ```


Youʼll also find common files like .gitignore and .npmrc (and .prettierrc and

eslint.config.js and so on, if you chose those options when running npx sv create).

Project files

src

The src directory contains the meat of your project. Everything except src/routes and

src/app.html is optional.

lib contains your library code (utilities and components), which can be imported via the $lib

alias, or packaged up for distribution using svelte-package

server contains your server-only library code. It can be imported by using the $lib/server

alias. SvelteKit will prevent you from importing these in client code.

params contains any param matchers your app needs

routes contains the routes of your application. You can also colocate other components that are only

used within a single route here

app.html is your page template — an HTML document containing the following placeholders:

%sveltekit.head% — <link> and <script> elements needed by the app, plus any

<svelte:head> content

%sveltekit.body% — the markup for a rendered page. This should live inside a <div> or

other element, rather than directly inside <body> , to prevent bugs caused by browser

extensions injecting elements that are then destroyed by the hydration process. SvelteKit will warn

you in development if this is not the case

%sveltekit.assets% — either paths.assets , if specified, or a relative path to

paths.base

%sveltekit.nonce% — a CSP nonce for manually included links and scripts, if used

%sveltekit.env.[NAME]% - this will be replaced at render time with the [NAME]

environment variable, which must begin with the publicPrefix (usually PUBLIC_). It will

fallback to '' if not matched.

error.html is the page that is rendered when everything else fails. It can contain the following

placeholders:

%sveltekit.status% — the HTTP status

9

%sveltekit.error.message% — the error message

hooks.client.js contains your client hooks

hooks.server.js contains your server hooks

service-worker.js contains your service worker

(Whether the project contains .js or .ts files depends on whether you opt to use TypeScript when you

create your project.)

If you added Vitest when you set up your project, your unit tests will live in the src directory with a

.test.js extension.

static

Any static assets that should be served as-is, like robots.txt or favicon.png , go in here.

tests

If you added Playwright for browser testing when you set up your project, the tests will live in this directory.

package.json

Your package.json file must include @sveltejs/kit , svelte and vite as

devDependencies .

When you create a project with npx sv create , youʼll also notice that package.json includes

"type": "module" . This means that .js files are interpreted as native JavaScript modules with

import and export keywords. Legacy CommonJS files need a .cjs file extension.

svelte.config.js

This file contains your Svelte and SvelteKit configuration.

tsconfig.json

This file (or jsconfig.json , if you prefer type-checked .js files over .ts) configures TypeScript, if

you added typechecking during npx sv create . Since SvelteKit relies on certain configuration being set a

specific way, it generates its own .svelte-kit/tsconfig.json file which your own config extends .

vite.config.js

A SvelteKit project is really just a Vite project that uses the @sveltejs/kit/vite plugin, along with any

other Vite configuration.

Other files

.svelte-kit

As you develop and build your project, SvelteKit will generate files in a .svelte-kit directory

(configurable as outDir). You can ignore its contents, and delete them at any time (they will be regenerated

when you next dev or build).

Edit this page on GitHub llms.txt

previous next

10

https://vitest.dev/
https://playwright.dev/
https://vitejs.dev/
https://vitejs.dev/config/
https://github.com/sveltejs/kit/edit/main/documentation/docs/10-getting-started/30-project-structure.md

Project types Web standards

11

Web standards

On this page

Web standards

Fetch APIs

FormData

Stream APIs

URL APIs

Web Crypto

Throughout this documentation, youʼll see references to the standard Web APIs that SvelteKit builds on top of.

Rather than reinventing the wheel, we use the platform, which means your existing web development skills are

applicable to SvelteKit. Conversely, time spent learning SvelteKit will help you be a better web developer

elsewhere.

These APIs are available in all modern browsers and in many non-browser environments like Cloudflare

Workers, Deno, and Vercel Functions. During development, and in adapters for Node-based environments

(including AWS Lambda), theyʼre made available via polyfills where necessary (for now, that is — Node is

rapidly adding support for more web standards).

In particular, youʼll get comfortable with the following:

Fetch APIs

SvelteKit uses fetch for getting data from the network. It s̓ available in hooks and server routes as well as in

the browser.

A special version of fetch is available in load functions, server hooks, and API routes for

invoking endpoints directly during server-side rendering, without making an HTTP call, while

preserving credentials. (To make credentialled fetches in server-side code outside load , you

must explicitly pass cookie and/or authorization headers.) It also allows you to make

relative requests, whereas server-side fetch normally requires a fully qualified URL.

Besides fetch itself, the Fetch API includes the following interfaces:

Request

An instance of Request is accessible in hooks and server routes as event.request . It contains useful

methods like request.json() and request.formData() for getting data that was posted to an

endpoint.

Response

An instance of Response is returned from await fetch(...) and handlers in +server.js files.

Fundamentally, a SvelteKit app is a machine for turning a Request into a Response .

Headers

The Headers interface allows you to read incoming request.headers and set outgoing

response.headers . For example, you can get the request.headers as shown below, and use the json

convenience function to send modified response.headers :

12

https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Headers

import { json } from '@sveltejs/kit';

export function GET({ request }) {

 // retrieve a specific header

 const userAgent = request.headers.get('user-agent');

 // set a header on the response

 return json({ userAgent }, {

 headers: {

 'x-custom-header': 'potato'

 }

 });

}

FormData

When dealing with HTML native form submissions youʼll be working with FormData objects.

import { json } from '@sveltejs/kit';

export async function POST({ request }) {

 const body = await request.formData();

 // log all fields

 // (see console usage below)

 console.log(...body);

 // create a JSON Response using a header we received

 return json({ name: body.get('name') ?? 'world' });

}

Stream APIs

Most of the time, your endpoints will return complete data, as in the userAgent example above.

Sometimes, you may need to return a response that s̓ too large to fit in memory in one go, or is delivered in

chunks, and for this the platform provides streams — ReadableStream, WritableStream, and TransformStream.

URL APIs

URLs are represented by the URL interface, which includes useful properties like origin and pathname

(and, in the browser, hash). This interface shows up in various places — event.url in hooks and server

routes, page.url in pages, from and to in beforeNavigate and afterNavigate, and so on.

URLSearchParams

Wherever you encounter a URL, you can access query parameters via url.searchParams , which is an

instance of URLSearchParams:

const foo = (new URL('https://example.com?foo=bar')).searchParams.get('foo'); // 'bar'

Web Crypto

The Web Crypto API is made available via the crypto global. It s̓ used internally for Content Security Policy

headers, but you can also use it for things like generating UUIDs:

13

https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API
https://developer.mozilla.org/en-US/docs/Web/API/ReadableStream
https://developer.mozilla.org/en-US/docs/Web/API/WritableStream
https://developer.mozilla.org/en-US/docs/Web/API/TransformStream
https://developer.mozilla.org/en-US/docs/Web/API/URL
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

const uuid = `${crypto.randomUUID()}-${crypto.randomUUID()}-${crypto.randomUUID()}-${c

Available only in secure contexts.

Edit this page on GitHub | llms.txt

Previous | Next

Project structure

Routing

14

https://github.com/sveltejs/kit/edit/main/documentation/docs/10-getting-started/40-web-standards.md

Hello

15

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

16

https://github.com/sveltejs/svelte.dev/issues
https://github.com/sveltejs/svelte.dev/issues

Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

17

SvelteKit - Core Concepts: Page
options

Page options

By default, SvelteKit renders each component on the server first and sends it as HTML, then re-renders it in

the browser for interactivity (hydration). Components must be able to run in both environments. SvelteKit

initializes a router for subsequent navigations.

You can control these options per page by exporting from +page.js or +page.server.js , or for

groups via shared +layout.js or +layout.server.js . To set app-wide defaults, export from the root

layout.

These options can be mixed and matched—e.g., prerender marketing pages, server-render dynamic pages for

SEO, or turn admin sections into SPAs.

prerender

Routes that can be generated as static HTML at build time are prerendered.

Set prerender flag

export const prerender: true;

Prerender with auto

Set prerender to 'auto' to prerender selectively while allowing dynamic or long-tail pages to be server-

rendered:

export const prerender: 'auto';

Prerender server routes

+server.js files inherit the prerender setting. If a route (or a parent page) exports prerender =

true , it is prerendered unless explicitly set to false.

When not to prerender

Prerendering requires identical content for all users. Personalized or dynamic content based on

url.searchParams or non-static data is unsuitable. Actions requiring server POST handling also cannot

be prerendered.

Route conflicts

Prerendering writes files; having both a directory and a file with the same name causes conflicts (foo/ vs

foo.json). Using file extensions (e.g., foo.json) avoids this. Static pages use index.html .

Troubleshooting

18

Routes marked as prerenderable but not crawled will cause errors. Fix by ensuring links to the route are

discoverable or explicitly listed in config.kit.prerender.entries . Routes with export const

prerender = true but not reached won't be prerendered.

entries

SvelteKit discovers pages to prerender starting from entry points. Non-dynamic routes are default entry

points, e.g., / , /blog .

You can specify explicit entries, especially for dynamic routes, with an entries function:

export function entries() {

 return [

 { slug: 'hello-world' },

 { slug: 'another-blog-post' }

];

}

export const prerender: true;

This function can be async, e.g., fetching post slugs from a CMS.

ssr

Server-side rendering (SSR) renders pages on the server before sending to the client. Set ssr = false to

disable SSR and render only an empty shell, useful for purely client-side pages.

export const ssr: false;

Note: If ssr and csr are both false, nothing is rendered.

csr

Client-side rendering (CSR) hydrates server-rendered HTML into an interactive page. Setting csr = false

disables CSR, making pages purely static HTML:

export const csr: false;

Disabling CSR:

Removes widget JavaScript

Web page works with HTML and CSS only

Links perform full page reload

HMR is disabled during development

Enable during development:

import { dev } from '$app/environment';

export const csr: boolean = dev;

trailingSlash

Controls trailing slash behavior in URLs, affecting file generation and SEO.

Options:

19

'never' (default): URLs like /about become /about.html

'always' : /about redirects to /about/ and creates /about/index.html

'ignore' : preserves URL as-is

Set in +layout.js :

export const trailingSlash = 'always'; // or 'never' / 'ignore'

config

Configuration object for deployment platforms; merges per-route configurations.

Example:

/** @type {import('some-adapter').Config} */

export const config = {

 runtime: 'edge'

};

Additionally, configuration objects are merged at the top level. For example:

export const config = {

 runtime: 'edge',

 regions: ['us1', 'us2'],

 foo: {

 baz: true

 }

};

These settings override defaults in layout or page configs.

Further reading

Tutorial: Page options

20

https://github.com/sveltejs/kit/edit/main/documentation/docs/20-core-concepts/40-page-options.md

State management

On this page

State management

Avoid shared state on the server

No side-effects in load

Using state and stores with context

Component and page state is preserved

Storing state in the URL

Storing ephemeral state in snapshots

Avoid shared state on the server

Browsers are stateful — state is stored in memory as the user interacts with the application. Servers, on the

other hand, are stateless — the content of the response is determined entirely by the content of the request.

Conceptually, that is. In reality, servers are often long-lived and shared by multiple users. For that reason it s̓

important not to store data in shared variables. For example, consider this code:

// +page.server

let user: any;

/** @type {import('./$types').PageServerLoad} */

export function load() {

 return { user };

}

/** @type {import('./$types').Actions} */

export const actions = {

 default: ({ request }) => {

 const data: any = await request.formData();

 // NEVER DO THIS!

 let user: any = {

 name: data.get('name'),

 embarrassingSecret: data.get('secret')

 };

 }

};

The user variable is shared by everyone who connects to this server. If Alice submitted an embarrassing

secret, and Bob visited the page after her, Bob would know Alice s̓ secret. In addition, when Alice returns to

the site later in the day, the server may have restarted, losing her data.

Instead, you should authenticate the user using cookies and persist the data to a database.

No side-effects in load

For the same reason, your load functions should be pure — no side-effects (except maybe the occasional

console.log(...)). For example, you might be tempted to write to a store or global state inside a load

21

function so that you can use the value in your components:

// +page.svelte

import { user } from '$lib/user';

/** @type {import('./$types').PageLoad} */

export async function load(event) {

 // This is buggy!

 const wordCount = data.content.split(' ').length;

 const estimatedReadingTime = wordCount / 250;

}

Instead, navigate your data by returning it from load and passing it into your components:

/** @type {import('./$types').PageServerLoad} */

export async function load({ fetch }) {

 const response = await fetch('/api/user');

 return {

 user: await response.json()

 };

}

Then, pass it around to components or access via page.data . Avoid side-effects in load to make your

applications easier to reason about.

Using state and stores with context

We can use Svelte s̓ context API (setContext , getContext) to share state or stores across components

without resorting to global variables. For example:

In a layout:

<script>

 import { setContext } from 'svelte';

 /** @type {import('./$types').LayoutProps} */

 let { data } = $props;

 // Pass a function referencing our state to the context

 setContext('user', () => data.user);

</script>

In a page:

<script>

 import { getContext } from 'svelte';

 // Retrieve user store from context

 const user = getContext('user');

</script>

<p>Welcome {user().name}</p>

Weʼre passing a function into setContext to keep reactivity across boundaries. Read more

about it here.

22

https://svelte.dev/docs/svelte/$context#Passing-state-into-functions

Legacy mode

You can also use stores from svelte/store , but with Svelte 5, it s̓ recommended to adopt universal

reactivity instead.

Note: Updating context-based state in deeper pages or components during SSR will not affect the parent, as the

parent has already been rendered by the time the state updates. On the client, the value propagates and

triggers updates up the hierarchy. To avoid visible 'flashing', it's advisable to pass state down rather than up.

Component and page state is preserved

When navigating within your application, SvelteKit reuses existing layout and page components. For example:

// src/routes/blog/[slug]/+page.svelte

/** @type {import('./$types').PageProps} */

let { data } = $props;

// THIS CODE IS BUGGY!

const wordCount = data.content.split(' ').length;

const estimatedReadingTime = wordCount / 250;

Because the component isnʼt recreated, lifecycle methods like onMount and onDestroy do not rerun,

and calculations like estimatedReadingTime wonʼt be recalculated automatically. To keep reactive data,

use Svelte reactivity:

<script>

 /** @type {import('./$types').PageProps} */

 let { data } = $props;

 let wordCount = $derived(() => data.content.split(' ').length);

 let estimatedReadingTime = $derived(() => wordCount / 250);

</script>

This approach preserves state across navigation without unnecessary recomputation.

Storing state in the URL

State that should survive reloads or affect SSR, such as filters or sorting rules, can be stored in URL search

parameters (e.g., ?sort=price&order=ascending). These can be set via , <form

action="..."> , or programmatically using goto('?key=value') . Inside load functions, access

these with the url parameter, and in components via page.url.searchParams .

Storing ephemeral state in snapshots

Transient UI state (e.g., whether an accordion is open) that can be rebuilt on page reload doesn't need to be

stored persistently. SvelteKit provides snapshots, which allow associating component state with a history

entry, useful for preserving UI state across navigations without persistent storage.

Edit this page on GitHub

llms.txt

23

https://github.com/sveltejs/kit/edit/main/documentation/docs/20-core-concepts/50-state-management.md

Previous | Next

Page options | Building your app

24

Building your app • Docs • Svelte
Skip to main content

Docs

Docs

Svelte SvelteKit CLI

Tutorial Playground Blog

Getting started

Introduction

Creating a project

Project types

Project structure

Web standards

Core concepts

Routing

Loading data

Form actions

Page options

State management

Build and deploy

Building your app

Adapters

Zero-config deployments

Node servers

Static site generation

Single-page apps

Cloudflare

Cloudflare Workers

Netlify

Vercel

Writing adapters

Advanced

Advanced routing

Hooks

Errors

Link options

Service workers

Server-only modules

Snapshots

Shallow routing

Packaging

Best practices

Auth

25

Performance

Icons

Images

Accessibility

SEO

Appendix

Frequently asked questions

Integrations

Breakpoint Debugging

Migrating to SvelteKit v2

Migrating from Sapper

Additional resources

Glossary

Reference

@sveltejs/kit

@sveltejs/kit/hooks

@sveltejs/kit/node/polyfills

@sveltejs/kit/node

@sveltejs/kit/vite

$app/environment

$app/forms

$app/navigation

$app/paths

$app/server

$app/state

$app/stores

$env/dynamic/private

$env/dynamic/public

$env/static/private

$env/static/public

$lib

$service-worker

Configuration

Command Line Interface

Types

SvelteKit Build and deploy

Building your app

On this page

Building your app

During the build

Preview your app

Building a SvelteKit app happens in two stages, which both happen when you run vite build (usually via

npm run build).

Firstly, Vite creates an optimized production build of your server code, your browser code, and your service

worker (if you have one). Prerendering is executed at this stage, if appropriate.

26

Secondly, an adapter takes this production build and tunes it for your target environment — more on this on

the following pages.

During the build

SvelteKit will load your +page/layout(.server).js files (and all files they import) for analysis during

the build. Any code that should not be executed at this stage must check that building from

$app/environment is false :

import { building } from '$app/environment';

if (!building) {

 import setupMyDatabase from '$lib/server/database';

 setupMyDatabase();

}

export function load(): void {

 // ...

}

Preview your app

After building, you can view your production build locally with vite preview (via npm run preview).

Note that this will run the app in Node, and so is not a perfect reproduction of your deployed app — adapter-

specific adjustments like the platform object do not apply to previews.

Edit this page on GitHub llms.txt

previous next

State management Adapters

27

https://github.com/sveltejs/kit/edit/main/documentation/docs/25-build-and-deploy/10-building-your-app.md

Hello

28

Writing adapters

On this page

Writing adapters

If an adapter for your preferred environment doesnʼt yet exist, you can build your own. We recommend

looking at the source for an adapter to a platform similar to yours and copying it as a starting point.

Adapter packages implement the following API, which creates an Adapter :

/** @param {AdapterSpecificOptions} options */

export default function (options: any) {

 /** @type {import('@sveltejs/kit').Adapter} */

 const adapter: Adapter = {

 /** The name of the adapter, using for logging. Will typically correspond to the p

 name: 'adapter-package-name',

 /**

 * This function is called after SvelteKit has built your app.

 * @param {Builder} builder An object provided by SvelteKit that contains methods

 */

 async adapt(builder: Builder) {

 // adapter implementation

 },

 /**

 * Creates an `Emulator`, which allows the adapter to influence the environment

 * during dev, build and prerendering

 */

 emulate() {

 return {

 async platform(

 details?: { config: any; prerender: PrerenderOption }

): Promise<App.Platform> {

 // the returned object becomes `event.platform` during dev, build and

 // preview. Its shape is that of `App.Platform`

 }

 };

 },

 /**

 * Checks called during dev and build to determine whether specific features will w

 */

 supports?: {

 read?: (details: { config: any; route: { id: string } }) => boolean;

 }

 };

 return adapter;

}

Of these, name and adapt are required. emulate and supports are optional.

29

https://github.com/sveltejs/kit/tree/main/packages

Within the adapt method, there are a number of things that an adapter should do:

Clear out the build directory

Write SvelteKit output with builder.writeClient , builder.writeServer , and

builder.writePrerendered

Output code that:

Imports Server from ${builder.getServerDirectory()}/index.js

Instantiates the app with a manifest generated with builder.generateManifest({

relativePath })

Listens for requests from the platform, converts them to a standard Request if necessary, calls the

server.respond(request, { getClientAddress }) function to generate a Response

and responds with it

Exposes any platform-specific information to SvelteKit via the platform option passed to

server.respond

Globally shims fetch to work on the target platform, if necessary. SvelteKit provides a

@sveltejs/kit/node/polyfills helper for platforms that can use undici

Bundle the output to avoid needing to install dependencies on the target platform, if necessary

Put the user s̓ static files and the generated JS/CSS in the correct location for the target platform

Where possible, we recommend putting the adapter output under the build/ directory with any

intermediate output placed under .svelte-kit/[adapter-name] .

Edit this page on GitHub

llms.txt

Previous Next

 | Advanced routing

30

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://github.com/sveltejs/kit/edit/main/documentation/docs/25-build-and-deploy/99-writing-adapters.md
https://docs.svelte.dev/docs/llms.txt
https://vercel.com/
https://vercel.com/

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

31

https://svelte.dev/chat
https://github.com/sveltejs/svelte.dev/issues

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

32

https://svelte.dev/chat
https://github.com/sveltejs/svelte.dev/issues

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

33

https://svelte.dev/chat
https://github.com/sveltejs/svelte.dev/issues

Single-page apps

On this page

Single-page apps

Usage

Apache

Prerendering individual pages

You can turn any SvelteKit app, using any adapter, into a fully client-rendered single-page app (SPA) by

disabling SSR at the root layout:

export const ssr: false;

In most situations this is not recommended: it harms SEO, tends to slow down perceived

performance, and makes your app inaccessible to users if JavaScript fails or is disabled (which

happens more often than you probably think).

If you donʼt have any server-side logic (i.e. +page.server.js , +layout.server.js or +server.js

files) you can use adapter-static to create your SPA by adding a fallback page.

Usage

Install with: npm i -D @sveltejs/adapter-static , then add the adapter to your

svelte.config.js with the following options:

import adapter from '@sveltejs/adapter-static';

export default {

 kit: {

 adapter: adapter({

 fallback: '200.html' // may differ from host to host

 })

 }

};

The fallback page is an HTML page created by SvelteKit from your page template (e.g., app.html) that

loads your app and navigates to the correct route. For example Surge, a static web host, lets you add a

200.html file that will handle any requests that donʼt correspond to static assets or prerendered pages.

On some hosts it may be index.html or something else entirely — consult your platforms̓ documentation.

Note that the fallback page will always contain absolute asset paths (i.e., beginning with / rather

than .) regardless of the value of paths.relative, since it is used to respond to requests for

arbitrary paths.

Apache

To run an SPA on Apache, you should add a static/.htaccess file to route requests to the fallback page:

<IfModule mod_rewrite.c>

 RewriteEngine On

 RewriteBase /

34

https://kryogenix.org/code/browser/everyonehasjs.html
https://github.com/sveltejs/adapter-static
https://surge.sh/help/adding-a-200-page-for-client-side-routing
https://httpd.apache.org/

 RewriteRule ^200\.html$ - [L]

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteRule . /200.html [L]

</IfModule>

Prerendering individual pages

If you want certain pages to be prerendered, you can re-enable ssr alongside prerender for just those

parts of your app:

// src/routes/my-prerendered-page/+page.js

export const prerender = true;

export const ssr = true;

Edit this page on GitHub

llms.txt

previous | next

Static site generation | Cloudflare

35

https://github.com/sveltejs/kit/edit/main/documentation/docs/25-build-and-deploy/55-single-page-apps.md
https://docs.svelte.dev/llms.txt
https://docs.svelte.dev/kit/adapter-static
https://docs.svelte.dev/kit/adapter-cloudflare

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

36

https://svelte.dev/chat
https://github.com/sveltejs/svelte.dev/issues

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

37

https://svelte.dev/chat
https://github.com/sveltejs/svelte.dev/issues

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

38

https://svelte.dev/chat
https://github.com/sveltejs/svelte.dev/issues

Not found!
If you were expecting to find something here, please drop by the Discord chatroom and let us know, or raise

an issue on GitHub. Thanks!

39

https://github.com/sveltejs/svelte.dev/issues
https://github.com/sveltejs/svelte.dev/issues

Advanced routing - Docs - Svelte

On this page

Rest parameters

404 pages

Optional parameters

Matching

Sorting

Encoding

Advanced layouts

Further reading

Rest parameters

If the number of route segments is unknown, you can use rest syntax — for example, you might implement

GitHubs̓ file viewer like so:

/[org]/[repo]/tree/[branch]/[...file]

...in which case a request for /sveltejs/kit/tree/main/documentation/docs/04-advanced-

routing.md would result in the following parameters being available to the page:

{

 "org": "sveltejs",

 "repo": "kit",

 "branch": "main",

 "file": "documentation/docs/04-advanced-routing.md"

}

src/routes/a/[...rest]/z/+page.svelte will match /a/z (i.e., there s̓ no parameter

at all) as well as /a/b/z and /a/b/c/z , and so on. Make sure you check that the value of the

rest parameter is valid, for example using a matcher.

404 pages

Rest parameters also allow you to render custom 404s. Given these routes...

src/routes/

├ marx-brothers/

│ ├ chico/

│ ├ harpo/

│ ├ groucho/

│ └ +error.svelte

└ +error.svelte

...the marx-brothers/+error.svelte file will not be rendered if you visit /marx-brothers/karl ,

because no route was matched. If you want to render the nested error page, you should create a route that

matches any /marx-brothers/* request, and return a 404 from it:

src/routes/

├ marx-brothers/

│ ├ [...path]/

40

│ │ ├ chico/

│ │ ├ harpo/

│ │ ├ groucho/

│ │ └ +error.svelte

└ +error.svelte

// src/routes/marx-brothers/[...path]/+page.js

import { error } from '@sveltejs/kit';

/** @type {import('./$types').PageLoad} */

export function load(event) {

 // Add additional logic here, if needed

 return reusableLoad(event);

 function error(status, body) {

 // Throws an error with a HTTP status code and an optional message.

 // When called during request handling, this will cause SvelteKit to

 // return an error response without invoking handleError.

 // Make sure you’re not catching the thrown error, which would prevent SvelteKit f

 throw error(status, body);

 }

 error(404, 'Not Found');

}

If you donʼt handle 404 cases, they will appear in handleError.

Optional parameters

A route like [lang]/home contains a parameter named lang which is required. Sometimes it s̓ beneficial

to make these parameters optional, so that in this example both home and en/home point to the same

page. You can do that by wrapping the parameter in another bracket pair: [[lang]]/home .

Note that an optional route parameter cannot follow a rest parameter ([...rest]/[[optional]]), since

parameters are matched ʻgreedilyʼ and the optional parameter would always be unused.

Matching

A route like src/routes/fruits/[page] would match /fruits/apple , but it would also match

/fruits/rocketship . To ensure route parameters are well-formed, you can add a matcher.

// src/params/fruit.js

/**

 * @param {string} param

 * @return {param is ('apple' | 'orange')}

 * @satisfies {import('@sveltejs/kit').ParamMatcher}

 */

export function match(param) {

 return param === 'apple' || param === 'orange';

}

And augment your routes:

src/routes/fruits/[page=fruit]

41

If the pathname doesnʼt match, SvelteKit will try to match other routes (using the sort order specified below),

before eventually returning a 404.

Each module in the params directory corresponds to a matcher, with the exception of *.test.js and

*.spec.js files which may be used to unit test your matchers.

Matchers run both on the server and in the browser.

Sorting

It s̓ possible for multiple routes to match a given path. For example, each of these routes would match /foo-

abc :

src/routes/[...catchall]/+page.svelte

src/routes/[[a=x]]/+page.svelte

src/routes/[b]/+page.svelte

src/routes/foo-[c]/+page.svelte

src/routes/foo-abc/+page.svelte

SvelteKit needs to know which route is being requested. To do so, it sorts them according to the following

rules...

More specific routes are higher priority (e.g., a route with no parameters is more specific than a route

with one dynamic parameter, and so on)

Parameters with matching (e.g., [name=type]) are higher priority than those without ([name])

[[optional]] and [...rest] parameters are ignored unless they are the final part of the route,

in which case they are treated with lowest priority. For example, x/[[y]]/z is equivalent to x/z for

sorting purposes.

Ties are resolved alphabetically

This ordering means that /foo-abc will invoke src/routes/foo-abc/+page.svelte , and /foo-

def will invoke src/routes/foo-[c]/+page.svelte rather than less specific routes:

src/routes/foo-abc/+page.svelte

src/routes/foo-[c]/+page.svelte

src/routes/[[a=x]]/+page.svelte

src/routes/[b]/+page.svelte

src/routes/[...catchall]/+page.svelte

Encoding

Some characters canʼt be used on the filesystem (/ on Linux and Mac; \ / : * ? " < > | on

Windows). The # and % characters have special meanings in URLs, and [] () characters also have

special meanings to SvelteKit, so these canʼt be used directly as part of your route.

To include these characters, use hexadecimal escape sequences of the form [x+nn] , where nn is a

hexadecimal character code:

\ — [x+5c]

/ — [x+2f]

: — [x+3a]

* — [x+2a]

? — [x+3f]

" — [x+22]

< — [x+3c]

> — [x+3e]

42

| — [x+7c]

— [x+23]

% — [x+25]

[— [x+5b]

] — [x+5d]

(— [x+28]

) — [x+29]

For example, to create a /smileys/:-) route, you would create a file at:

src/routes/smileys/[x+3a]-[x+29]/+page.svelte

You can determine the hexadecimal code for a character in JavaScript:

':'.charCodeAt(0).toString(16); // '3a'

Unicode escape sequences can also be used, formatted as [u+nnnn] , where nnnn is a valid Unicode code

point between 0000 and 10ffff .

// Example: 😜

src/routes/[u+d83e][u+dd2a]/+page.svelte

// or directly with emoji

src/routes/🤪/+page.svelte

Since TypeScript struggles with directories with a leading . character, you may find it useful to

encode these characters when creating e.g. .well-known routes:

src/routes/[x+2e]well-known/...

Advanced layouts

By default, the layout hierarchy mirrors the route hierarchy. Sometimes, you may want different layout

groups.

(group)

For example, routes on /dashboard or /item might share a layout, while marketing pages like

/about or /testimonials use another. You can group routes with a directory name wrapped in

parentheses. These do not affect the URL pathname of contained routes:

src/routes/

│ (app)/

│ ├ dashboard/

│ ├ item/

│ └ +layout.svelte

│ (marketing)/

│ ├ about/

│ ├ testimonials/

│ └ +layout.svelte

├ admin/

└ +layout.svelte

You can also put a +page directly inside a (group) if needed.

Breaking out of layouts

43

https://github.com/microsoft/TypeScript/issues/13399

The root layout applies to every page unless omitted. To override for specific pages, place entire app inside one

or more groups except for routes that should not inherit them.

In the previous example, /admin does not inherit (app) or (marketing) layouts.

+page@

Pages can break out of the current layout hierarchy using @ to specify which layout to inherit from:

src/routes/

├ (app)/

│ ├ item/

│ │ ├ [id]/

│ │ │ ├ embed/

│ │ │ │ └ +page@(app).svelte

│ │ │ └ +layout.svelte

│ │ └ +layout.svelte

│ └ +layout.svelte

Possible options:

+page@[id].svelte — inherits from (app)/item/[id]/+layout.svelte

+page@item.svelte — inherits from (app)/item/+layout.svelte

+page@(app).svelte — inherits from (app)/+layout.svelte

+page@.svelte — inherits from the root layout src/routes/+layout.svelte

+layout@

Similarly, layouts can break out of their parent layout with @ , resetting the hierarchy for all children. For

example:

src/routes/

├ (app)/

│ ├ item/

│ │ ├ [id]/

│ │ │ ├ embed/

│ │ │ │ └ +page.svelte // uses (app)/item/[id]/+layout.svelte

│ │ │ ├ +layout.svelte // inherits from (app)/item/+layout@.svelte

│ │ │ └ +page.svelte // uses (app)/item/+layout@.svelte

│ │ └ +layout@.svelte // skips `(app)/+layout.svelte`

│ └ +layout.svelte

└ +layout.svelte

When to use layout groups

Not all cases require layout grouping. You can use composition, reusable load functions, or conditionals inside

components for flexibility.

An example layout that rewinds to the root layout:

<script>

 import ReusableLayout from '$lib/ReusableLayout.svelte';

 let { data, children } = $props();

</script>

<ReusableLayout {data}>

44

 {@render children()}

</ReusableLayout>

+page@ to break out of layout hierarchy

Suppose, inside (app) group, you have /item/[id]/embed :

src/routes/

├ (app)/

│ ├ item/

│ │ ├ [id]/

│ │ │ ├ embed/

│ │ │ │ └ +page@(app).svelte

Options:

+page@[id].svelte — inherits from src/routes/(app)/item/[id]/+layout.svelte

+page@item.svelte

+page@(app).svelte

+page@.svelte — inherit from root layout

+layout@

Layouts can also break out similarly to pages, e.g.,

src/routes/

├ (app)/

│ ├ item/

│ │ ├ [id]/

│ │ │ ├ embed/

│ │ │ │ └ +layout@.svelte

This resets the hierarchy for child routes.

When to use layout groups

Use them when they simplify your structure or reuse. Avoid overly complex nesting to keep your project

manageable.

Advanced layouts example

In src/routes/nested/route/+layout@.svelte , you can import components:

<script>

 import ReusableLayout from '$lib/ReusableLayout.svelte';

 let { data, children } = $props();

</script>

<ReusableLayout {data}>

 {@render children()}

</ReusableLayout>

or with TypeScript:

<script lang="ts">

 import ReusableLayout from '$lib/ReusableLayout.svelte';

45

 let { data, children } = $props();

</script>

<ReusableLayout {data}>

 {@render children()}

</ReusableLayout>

reusableLoad function example

import { error } from '@sveltejs/kit';

/** @type {import('./$types').PageLoad} */

export function load(event) {

 return reusableLoad(event);

 function error(status, body) {

 throw error(status, body);

 }

}

// Or with additional logic

import { reusableLoad } from '$lib/reusable-load-function';

/** @type {import('./$types').PageLoad} */

export function load(event) {

 // Add custom logic here

 return reusableLoad(event);

}

Further reading

Tutorial: Advanced Routing

Edit this page on GitHub

llms.txt

previous next

Writing adapters Hooks

46

https://github.com/sveltejs/kit/edit/main/documentation/docs/30-advanced/10-advanced-routing.md
https://example.com/docs/kit/advanced-routing/llms.txt

Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

47

https://example.com/

Errors

On this page

Errors

Error objects

Expected errors

Unexpected errors

Responses

Type safety

Further reading

Errors

Errors are an inevitable fact of software development. SvelteKit handles errors differently depending on where

they occur, what kind of errors they are, and the nature of the incoming request.

Error objects

SvelteKit distinguishes between expected and unexpected errors, both of which are represented as simple {

message: string } objects by default.

You can add additional properties, like a code or a tracking id , as shown in the examples below. (When

using TypeScript this requires you to redefine the Error type as described in type safety).

Expected errors

An expected error is one created with the error helper imported from @sveltejs/kit.

import { error } from '@sveltejs/kit';

/** @type {import('./$types').PageServerLoad} */

export async function load({ params }) {

 const post = await getPost(params.slug);

 if (!post) {

 throw error(404, {

 message: 'Not found'

 });

 }

 return {

 post

 };

}

This throws an exception that SvelteKit catches, causing it to set the response status code to 404 and render an

error.svelte component, where page.error is the object provided as the second argument to

error(...) .

You can also pass a string as the second argument for convenience:

error(404, 'Not found');

48

https://github.com/sveltejs/kit

Unexpected errors

An unexpected error is any other exception that occurs while handling a request. Since these can contain

sensitive information, unexpected error messages and stack traces are not exposed to users.

By default, unexpected errors are printed to the console (or, in production, your server logs), while the error

that is exposed to the user has a generic shape:

{ "message": "Internal Error" }

Unexpected errors will go through the handleError hook, where you can add your own error handling— for

example, sending errors to a reporting service, or returning a custom error object which becomes

$page.error .

Responses

If an error occurs inside handle or inside a request handler, SvelteKit will respond with either a fallback

error page or a JSON representation of the error object, depending on the request s̓ Accept headers.

You can customize the fallback error page by adding a src/error.html file:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <title>%sveltekit.error.message%</title>

 </head>

 <body>

 <h1>My custom error page</h1>

 <p>Status: %sveltekit.status%</p>

 <p>Message: %sveltekit.error.message%</p>

 </body>

</html>

SvelteKit will replace %sveltekit.status% and %sveltekit.error.message% with their

corresponding values.

If the error occurs inside a load function while rendering a page, SvelteKit will render the +error.svelte

component nearest to where the error occurred. If the error occurs inside a load function in

+layout(.server).js , the closest error boundary in the tree is an +error.svelte file above that

layout (not next to it).

The exception is when the error occurs inside the root +layout.js or +layout.server.js , since the

root layout would ordinarily contain the +error.svelte component. In this case, SvelteKit uses the

fallback error page.

Type safety

If youʼre using TypeScript and need to customize the shape of errors, you can do so by declaring an

App.Error interface in your app (by convention, in src/app.d.ts , though it can live anywhere that

TypeScript can ʻseeʼ):

declare global {

 namespace App {

 interface Error {

 /**

 * Defines the common shape of expected and unexpected errors. Expected errors a

49

 * Unexpected errors are handled by the `handleError` hooks which should return

 */

 "code": string;

 "id": string;

 }

 }

}

export {};

This interface always includes a message: string property.

Further reading

Tutorial: Errors and redirects

Tutorial: Hooks

50

Link options

On this page

Link options

data-sveltekit-preload-data

data-sveltekit-preload-code

data-sveltekit-reload

data-sveltekit-replacestate

data-sveltekit-keepfocus

data-sveltekit-noscroll

Disabling options

Overview

In SvelteKit, <a> elements (rather than framework-specific <Link> components) are used to navigate

between the routes of your app. If the user clicks on a link whose href is owned by the app (not an external

link), SvelteKit navigates to the new page by importing its code and calling any load functions needed to

fetch data.

You can customize link behavior using data-sveltekit-* attributes. These can be applied directly to the

<a> element or to a parent element.

These options also apply to <form> elements with a <a href="form-actions#GET-vs-

POST">method="GET" .

data-sveltekit-preload-data

Before the browser recognizes a click on a link, it can detect if the user has hovered the mouse over it

(desktop) or triggered a touchstart or mousedown . This suggests an impending click .

SvelteKit can prefetch the code and data, giving a smoother UI. Control this with data-sveltekit-

preload-data , which can be:

"hover" : preload on hover (default)

"tap" : preload on tap or click

The default <body> has data-sveltekit-preload-data="hover" , preloading links on hover. To

disable preloading on hover, set data-sveltekit-preload-data="tap" , for example:

<a data-sveltekit-preload-data="tap" href="/stonks">Get current stonk values

You can also programmatically invoke preloadData from $app/navigation .

Data preloading respects the navigator.connection.saveData setting, which if true , disables

preloading.

data-sveltekit-preload-code

Preloading code can improve performance. It can be triggered eagerly or lazily with:

"eager" : preload immediately

51

"viewport" : preload when in viewport

"hover" : preload on hover (only code)

"tap" : preload on tap or click (only code)

Note: viewport and eager apply only to links already in DOM at navigation start. They will not trigger

for dynamically added links.

This attribute only works if it's more eager than any data-sveltekit-preload-data present.

Preloading is disabled if reduced data usage is detected (navigator.connection.saveData).

data-sveltekit-reload

Add this attribute to compel a full-page reload instead of SvelteKit navigation:

<a data-sveltekit-reload href="/path">Path

Links with rel="external" will also use full reload, and such links are ignored during prerendering.

data-sveltekit-replacestate

Use this attribute to replace the current history entry instead of pushing a new one:

<a data-sveltekit-replacestate href="/path">Path

data-sveltekit-keepfocus

Prevent focus from resetting after navigation, useful for forms:

<form data-sveltekit-keepfocus>

 <input type="text" name="query" />

</form>

Note: Avoid using on links; focus should typically move naturally after navigation. Use on elements that

remain after navigation; otherwise, focus may be lost.

data-sveltekit-noscroll

Disable scroll position reset after navigation:

Path

This preserves current scroll position during navigation.

Disabling options

To disable any of these options within a container:

<div data-sveltekit-preload-data="false">

 <!-- links here will not preload data -->

 a

 b

 c

</div>

52

You can also conditionally apply attributes:

<div data-sveltekit-preload-data={condition ? 'hover' : false}>

 <!-- links here -->

</div>

Edit this page on GitHub

llms.txt

Previous | Next

Errors | Service workers

53

https://github.com/sveltejs/kit/edit/main/documentation/docs/30-advanced/30-link-options.md
https://kit.svelte.dev/docs/errors
https://kit.svelte.dev/docs/service-workers

Service workers

On this page

Service workers

Inside the service worker

During development

Type safety

Other solutions

References

Service workers

Service workers act as proxy servers that handle network requests inside your app. This makes it possible to

make your app work offline, but even if you donʼt need offline support (or canʼt realistically implement it

because of the type of app youʼre building), it s̓ often worth using service workers to speed up navigation by

precaching your built JS and CSS.

In SvelteKit, if you have a src/service-worker.js file (or src/service-worker/index.js) it will

be bundled and automatically registered. You can change the location of your service worker if you need to.

You can disable automatic registration if you need to register the service worker with your own logic or use

another solution. The default registration looks something like this:

if ('serviceWorker' in navigator) {

 window.addEventListener('load', () => {

 navigator.serviceWorker

 .register('./path/to/service-worker.js')

 .then(registration => {

 // Registration was successful

 console.log('ServiceWorker registration successful with scope: ', registration

 })

 .catch(error => {

 // registration failed

 console.log('ServiceWorker registration failed:', error);

 });

 });

}

Inside the service worker

Inside the service worker you have access to the $service-worker module, which provides you with the paths

to all static assets, build files, and prerendered pages. Youʼre also provided with an app version string, which

you can use for creating a unique cache name, and the deployment s̓ base path. If your Vite config specifies

define (used for global variable replacements), this will be applied to service workers as well as your

server/client builds.

The following example caches the built app and any files in static eagerly, and caches all other requests as

they happen. This would make each page work offline once visited:

/// <reference types="@sveltejs/kit" />

import { build, files, version } from '$service-worker';

54

// Create a unique cache name for this deployment

const CACHE = `cache-${version}`;

// Define assets to cache

const ASSETS = [

 ...build, // the files generated by Vite

 ...files // the static assets in your static directory

];

// Install event

self.addEventListener('install', (event) => {

 // Create a new cache and add all files to it

 event.waitUntil(

 caches.open(CACHE).then((cache) => {

 return cache.addAll(ASSETS);

 })

);

});

// Activate event

self.addEventListener('activate', (event) => {

 // Remove previous cached data

 event.waitUntil(

 (async () => {

 const cacheNames = await caches.keys();

 await Promise.all(

 cacheNames.map((key) => {

 if (key !== CACHE) {

 return caches.delete(key);

 }

 })

);

 })()

);

});

// Fetch event

self.addEventListener('fetch', (event) => {

 // Ignore POST requests etc.

 if (event.request.method !== 'GET') return;

 event.respondWith(

 (async () => {

 const cache = await caches.open(CACHE);

 const cachedResponse = await cache.match(event.request);

 if (cachedResponse) {

 return cachedResponse;

 }

 try {

 const response = await fetch(event.request);

 // Save to cache if response is OK

 if (response.status === 200) {

55

 cache.put(event.request, response.clone());

 }

 return response;

 } catch (err) {

 // Optionally, fallback response or error handling

 throw err;

 }

 })()

);

});

Be careful when caching! In some cases, stale data might be worse than data that s̓ unavailable

while offline. Since browsers will empty caches if they get too full, you should also be careful about

caching large assets like video files.

During development

The service worker is bundled for production, but not during development. For that reason, only browsers

that support modules in service workers will be able to use them at dev time. If you are manually registering

your service worker, you will need to pass the { type: 'module' } option in development:

import { dev } from '$app/environment';

if (dev) {

 navigator.serviceWorker.register('/service-worker.js', { type: 'module' });

} else {

 navigator.serviceWorker.register('/service-worker.js');

}

build and prerendered are empty arrays during development

Type safety

Setting up proper types for service workers requires some manual setup. Inside your service-

worker.js , add the following to the top of your file:

/// <reference types="@sveltejs/kit" />

/// <reference no-default-lib="true"/>

/// <reference lib="esnext" />

/// <reference lib="webworker" />

const sw = /** @type {ServiceWorkerGlobalScope} */ (/** @type {unknown} */ (self));

This disables access to DOM typings like HTMLElement which are not available inside a service worker and

instantiates the correct globals. The reassignment of self to sw allows you to type cast it in the process.

Use sw instead of self in the rest of your code. The reference to the SvelteKit types ensures that the

$service-worker import has proper type definitions.

Other solutions

SvelteKit s̓ service worker implementation is designed to be easy to work with and is probably a good solution

for most users. However, outside of SvelteKit, many PWA applications leverage the Workbox library. If youʼre

used to using Workbox, you may prefer the Vite PWA plugin.

References

56

https://web.dev/es-modules-in-sw
https://web.dev/learn/pwa/workbox
https://vite-pwa-org.netlify.app/frameworks/sveltekit.html

For more general information on service workers, we recommend the MDN web docs on using Service

Workers.

Edit this page on GitHub | llms.txt

previous next

Link options Server-only modules

57

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://github.com/sveltejs/kit/edit/main/documentation/docs/30-advanced/40-service-workers.md

Server-only modules

On this page

Server-only modules

Private environment variables

Server-only utilities

Your modules

How it works

Further reading

Introduction

Like a good friend, SvelteKit keeps your secrets. When writing your backend and frontend in the same

repository, it can be easy to accidentally import sensitive data into your front-end code (environment variables

containing API keys, for example). SvelteKit provides a way to prevent this entirely: server-only modules.

Private environment variables

The $env/static/private and $env/dynamic/private modules can only be imported into

modules that only run on the server, such as hooks or +page.server.js .

Server-only utilities

The $app/server module, which contains a read function for reading assets from the filesystem, can

likewise only be imported by code that runs on the server.

Your modules

You can make your own modules server-only in two ways:

adding .server to the filename, e.g. secrets.server.js

placing them in $lib/server , e.g. $lib/server/secrets.js

How it works

Any time you have public-facing code that imports server-only code (whether directly or indirectly)...

// Example: export in $lib/server/secrets.js

export const atlantisCoordinates = [/* redacted */];

// Example: import in src/routes/utils.js

export { atlantisCoordinates } from '$lib/server/secrets.js';

<!-- Example: usage in src/routes/+page.svelte -->

<script>

 import { add } from './utils.js';

</script>

...SvelteKit will error:

Cannot import $lib/server/secrets.js into public-facing code:

- src/routes/+page.svelte

58

 - src/routes/utils.js

 - $lib/server/secrets.js

Even though the public-facing code — src/routes/+page.svelte — only uses the add export and not

the secret atlantisCoordinates export, the secret code could end up in JavaScript that the browser

downloads, and so the import chain is considered unsafe.

This feature also works with dynamic imports, even interpolated ones like await import(\ ./${foo}.js`)`,

with one small caveat: during development, if there are two or more dynamic imports between the public-

facing code and the server-only module, the illegal import will not be detected the first time the code is

loaded.

Unit testing frameworks like Vitest do not distinguish between server-only and public-facing code.

For this reason, illegal import detection is disabled when running tests, as determined by

process.env.TEST === 'true' .

Further reading

Tutorial: Environment variables

Edit this page on GitHub

llms.txt

Previous | Next

Service workers

Snapshots

59

https://github.com/sveltejs/kit/edit/main/documentation/docs/30-advanced/50-server-only-modules.md
https://docs/kit/server-only-modules/llms.txt

Hello

60

SvelteKit: Shallow routing

On this page

Shallow routing

API

Loading data for a route

Caveats

Overview

As you navigate around a SvelteKit app, you create history entries. Clicking the back and forward buttons

traverses through this list of entries, re-running any load functions and replacing page components as

necessary.

Sometimes, it s̓ useful to create history entries without navigating. For example, you might want to show a

modal dialog that the user can dismiss by navigating back. This is particularly valuable on mobile devices,

where swipe gestures are often more natural than interacting directly with the UI. In these cases, a modal that

is not associated with a history entry can be a source of frustration, as a user may swipe backwards in an

attempt to dismiss it and find themselves on the wrong page.

SvelteKit makes this possible with the pushState and replaceState functions, which allow you to

associate state with a history entry without navigating.

Example: implementing a history-driven modal

<script>

 import { pushState } from '$app/navigation';

 import { page } from '$app/states';

 import Modal from './Modal.svelte';

 function showModal() {

 pushState('', {

 showModal: true

 });

 }

</script>

{#if page.state.showModal}

 <Modal onclose={() => history.back()} />

{/if}

<script lang="ts">

 import { pushState } from '$app/navigation';

 import { page } from '$app/states';

 import Modal from './Modal.svelte';

 function showModal() {

 pushState('', {

 showModal: true

 });

 }

61

</script>

{#if page.state.showModal}

 <Modal onclose={() => history.back()} />

{/if}

The modal can be dismissed by navigating back (unsetting page.state.showModal) or by interacting

with it in a way that causes the close callback to run, which will navigate back programmatically.

API

The first argument to pushState is the URL, relative to the current URL. To stay on the current URL, use

'' .

The second argument is the new page state, which can be accessed via the page object as page.state . You

can make page state type-safe by declaring an App.PageState interface (usually in src/app.d.ts).

To set page state without creating a new history entry, use replaceState instead of pushState .

Legacy mode

page.state from $app/state was added in SvelteKit 2.12. If youʼre using an earlier version

or are using Svelte 4, use $page.state from $app/stores instead.

Loading data for a route

When shallow routing, you may want to render another +page.svelte inside the current page. For

example, clicking on a photo thumbnail could pop up the detail view without navigating to the photo page.

For this to work, you need to load the data that the +page.svelte expects. A convenient way is to use

preloadData inside the click handler of an <a> element. If the element (or a parent) uses data-sveltekit-

preload-data, the data will have already been requested, and preloadData will reuse that request.

Example:

<script>

 import { preloadData, pushState, goto } from '$app/navigation';

 import { page } from '$app/states';

 import Modal from './Modal.svelte';

 import PhotoPage from './[id]/+page.svelte';

 let { data } = $props;

</script>

{#each data.thumbnails as thumbnail}

 <a

 href="/photos/{thumbnail.id}"

 onclick={async (e) => {

 if (innerWidth < 640 || e.shiftKey || e.metaKey || e.ctrlKey) return;

 // prevent navigation

 e.preventDefault();

 const { href } = e.currentTarget;

 // run `load` functions (or rather, get the result of the `load` functions)

62

 const result = await preloadData(href);

 if (result.type === 'loaded' && result.status === 200) {

 pushState(href, { selected: result.data });

 } else {

 // fallback: navigate normally

 goto(href);

 }

 }}

 >

{/each}

{#if page.state.selected}

 <Modal onclose={() => history.back()}>

 <!-- pass page data to the +page.svelte component, just like SvelteKit would on na

 <PhotoPage data={page.state.selected} />

 </Modal>

{/if}

Caveats

During server-side rendering, page.state is always an empty object. The same is true for the first page the

user lands on — if the user reloads the page or returns from another document, state will not be applied until

they navigate.

Shallow routing is a feature that requires JavaScript to work. Be mindful when using it and try to think of

sensible fallback behavior in case JavaScript isnʼt available.

Edit this page on GitHub

llms.txt

Previous | Next

Snapshots | Packaging

63

https://github.com/sveltejs/kit/edit/main/documentation/docs/30-advanced/67-shallow-routing.md

Packaging

On this page

Packaging

Anatomy of a package.json

TypeScript

Best practices

Source maps

Options

Publishing

Caveats

Introduction

You can use SvelteKit to build apps as well as component libraries, using the @sveltejs/package package

(npx sv create has an option to set this up for you).

When youʼre creating an app, the contents of src/routes is the public-facing stuff; src/lib contains your

apps̓ internal library.

A component library has the exact same structure as a SvelteKit app, except that src/lib is the public-

facing bit, and your root package.json is used to publish the package. src/routes might be a

documentation or demo site that accompanies the library, or it might just be a sandbox you use during

development.

Running the svelte-package command from @sveltejs/package will take the contents of

src/lib and generate a dist directory (which can be configured) containing the following:

All the files in src/lib . Svelte components will be preprocessed, TypeScript files will be transpiled to

JavaScript.

Type definitions (d.ts files) which are generated for Svelte, JavaScript, and TypeScript files. You need

to install typescript >= 4.0.0 for this. Type definitions are placed next to their implementation;

hand-written d.ts files are copied over as is. You can disable generation, but it is strongly

recommended — people using your library might use TypeScript, which requires these type definition

files.

@sveltejs/package version 1 generated a package.json . This is no longer the case, and it

will now use the package.json from your project and validate that it is correct instead. If

youʼre still on version 1, see this PR for migration instructions.

Anatomy of a package.json

Since youʼre now building a library for public use, the contents of your package.json will become more

important. Through it, you configure entry points of your package, which files are published to npm, and

which dependencies your library has. Let s̓ go through the most important fields:

name

This is the name of your package. It will be available for others to install using that name, and visible on npm.

64

https://github.com/sveltejs/kit/pull/8922
https://npmjs.com/package/%3Cname%3E

{

 "name": "your-library"

}

Read more about it here.

license

Every package should have a license field so people know how they are allowed to use it. A very popular

license that is also very permissive in terms of distribution and reuse without warranty is MIT .

{

 "license": "MIT"

}

Read more about it here. Note that you should also include a LICENSE file in your package.

files

This tells npm which files it will pack up and upload to npm. It should contain your output folder (dist by

default). Your package.json and README and LICENSE will always be included, so you donʼt need to

specify them.

{

 "files": ["dist"]

}

To exclude unnecessary files (such as unit tests, or modules that are only imported from src/routes etc.),

add them to an .npmignore file. This results in smaller packages that are faster to install.

Read more about it here.

exports

The "exports" field contains the package s̓ entry points. If you set up a new library project through npx

sv create , it s̓ set to a single export, the package root:

{

 "exports": {

 ".": {

 "types": "./dist/index.d.ts",

 "svelte": "./dist/index.js"

 }

 }

}

This informs bundlers and tooling that your package only has one entry point, the root, and everything should

be imported through that:

import { Something } from 'your-library';

The types and svelte keys are export conditions. They tell tooling what file to import when looking up

the your-library import:

TypeScript sees the types condition and looks up the type definition file. If you donʼt publish type

definitions, omit this condition.

Svelte-aware tooling sees the svelte condition and recognizes this as a Svelte component library. For

libraries that do not export Svelte components but still work in non-Svelte projects, you can replace this

65

https://docs.npmjs.com/cli/v9/configuring-npm/package-json#name
https://docs.npmjs.com/cli/v9/configuring-npm/package-json#license
https://docs.npmjs.com/cli/v9/configuring-npm/package-json#files
https://nodejs.org/api/packages.html#conditional-exports

with default .

Previous versions of @sveltejs/package added a package.json export. That is no longer

part of the template because all tooling now can handle a package.json without an explicit

export.

You can customize the exports to your needs. For example, exposing a specific component directly:

{

 "exports": {

 "./Foo.svelte": {

 "types": "./dist/Foo.svelte.d.ts",

 "svelte": "./dist/Foo.svelte"

 }

 }

}

Consumers can then import directly:

import Foo from 'your-library/Foo.svelte';

Beware that doing this requires additional care if you provide type definitions. More here.

Each key in the exports map is the path users will use to import from your package, with values being

either the file path to import or a map of conditions with respective paths.

Read more about here.

svelte

This is a legacy field that recognized Svelte component libraries. It s̓ no longer needed when using the

svelte export condition, but for backward compatibility it can stay. It should point to your root entry point:

{

 "svelte": "./dist/index.js"

}

sideEffects

The sideEffects field helps bundlers determine if a module contains side effects. Modules are considered

to have side effects if they modify global variables or prototypes when imported.

Setting this field correctly improves tree-shaking and results in smaller bundles. By default, newly created

projects mark scripts as side-effect-free.

Example:

{

 "sideEffects": ["**/*.css"]

}

If your package has files with side effects, list them:

{

 "sideEffects": [

 "**/*.css",

 "./dist/sideEffectfulFile.js"

]

}

66

https://nodejs.org/docs/latest-v18.x/api/packages.html#package-entry-points

TypeScript

Even if you donʼt use TypeScript, providing type definitions helps users with better IntelliSense.

By default, @sveltejs/package auto-generates type definitions for JavaScript, TypeScript, and Svelte

files, with the correct types condition set in the exports map.

If you expose additional modules (like your-library/foo), you need to ensure type definitions are

correctly resolved. TypeScript may not correctly resolve types for exports that don't follow the default

structure.

Options include:

Requiring users to set moduleResolution to bundler , node16 , or nodenext .

Using the typesVersions field in package.json , which remaps types based on TypeScript

version:

{

 "exports": {

 "./foo": {

 "types": "./dist/foo.d.ts",

 "svelte": "./dist/foo.js"

 }

 },

 "typesVersions": {

 ">4.0": {

 "foo": ["./dist/foo.d.ts"]

 }

 }

}

More here.

Best practices

Avoid using SvelteKit-specific modules like $app/environment in packages unless intended solely for

SvelteKit projects. Use alternatives like esm-env .

Pass configuration or environment details as props instead of relying on $app stores, to improve testability

and reusability.

Ensure you add aliases via svelte.config.js , not vite.config.js or tsconfig.json , so they

are processed correctly by svelte-package .

Update your package version carefully, especially when removing export paths or changing conditions, as

these are breaking changes.

Source maps

Generate declaration maps by setting "declarationMap": true in tsconfig.json . This assists

editors like VS Code in linking back to source files for features like "Go to Definition."

Include your source files in files , e.g., src/lib , so relative paths lead to actual source files on disk:

{

 "files": [

 "dist",

67

https://www.typescriptlang.org/docs/handbook/declaration-files/publishing.html#version-selection-with-typesversions
https://github.com/benmccann/esm-env

 "src/lib"

]

}

Options

@sveltejs/package accepts options:

-w / --watch : watch src/lib for changes and rebuild

-i / --input : input directory (defaults to src/lib)

-o / --output : output directory (defaults to dist)

-t / --types : generate type definitions (defaults to true)

--tsconfig : path to tsconfig.json or jsconfig.json

Publishing

To publish the package:

npm publish

Caveats

All relative imports must be fully specified with extensions, e.g.,

import { something } from './something/index.js';

for TypeScript, the same applies; use .js extension, not .ts . Setting "moduleResolution":

"NodeNext" in tsconfig.json helps.

All files except Svelte and transpiled TypeScript will be copied as-is during build.

68

