
Mastering TypeScript: A
Comprehensive Guide

This book provides a complete guide to TypeScript, starting from the basics and advancing to more complex

topics. It is ideal for both beginners and experienced developers, offering insights into TypeScript syntax,

static type checking, project configuration, and advanced features. Learn how to leverage TypeScript to

enhance JavaScript applications and improve code quality through detailed tutorials and case studies.

1

Table of Contents

Introduction to TypeScript

TS for the New Programmer

TypeScript for JS Programmers

TS for Java/C# Programmers

TS for Functional Programmers

TypeScript Tooling in 5 minutes

Understanding JavaScript

What is JavaScript? A Brief History

Static Type Checking

TypeScript: A Static Type Checker

TypeScript Syntax

A Typed Superset of JavaScript

Type Manipulation

Type Manipulation

TypeScript in Practice

Utility Types

Cheat Sheets

JavaScript and TypeScript Interoperability

Using TypeScript with JavaScript

Project Configuration in TypeScript

What is a tsconfig.json

Advanced TypeScript Features

Generics

Tutorials and Case Studies

ASP.NET Core

Gulp

2

https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-for-js-programmers.html
https://www.typescriptlang.org/docs/handbook/typescript-for-java-programmers.html
https://www.typescriptlang.org/docs/handbook/typescript-for-functional-programmers.html
https://www.typescriptlang.org/docs/handbook/typescript-for-tooling.html
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#what-is-javascript-a-brief-history
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#typescript-a-static-type-checker
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#a-typed-superset-of-javascript
https://www.typescriptlang.org/docs/handbook/2/functions.html
https://www.typescriptlang.org/docs/handbook/utility-types.html
https://www.typescriptlang.org/docs/handbook/cheat-sheets.html
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://www.typescriptlang.org/docs/handbook/generics.html
https://www.typescriptlang.org/docs/handbook/asp-net.html
https://www.typescriptlang.org/docs/handbook/gulp.html

TypeScript for JavaScript
Programmers

Overview

TypeScript stands in an unusual relationship to JavaScript. TypeScript offers all of JavaScript s̓ features, and an

additional layer on top of these: TypeScript s̓ type system.

For example, JavaScript provides language primitives like string and number , but it doesnʼt check that

youʼve consistently assigned these. TypeScript does.

This means that your existing working JavaScript code is also TypeScript code. The main benefit of TypeScript

is that it can highlight unexpected behavior in your code, lowering the chance of bugs.

This tutorial provides a brief overview of TypeScript, focusing on its type system.

Types by Inference

TypeScript knows the JavaScript language and will generate types for you in many cases. For example, when

creating a variable and assigning it a value, TypeScript will infer its type.

let helloWorld = "Hello World"; // helloWorld is inferred as string

Try it here

By understanding how JavaScript works, TypeScript can build a type-system that accepts JavaScript code but

has types. This offers a type-system without needing to add extra characters to make types explicit in your

code. That s̓ how TypeScript knows that helloWorld is a string in the above example.

You may have written JavaScript in Visual Studio Code, and had editor auto-completion. Visual Studio Code

uses TypeScript under the hood to make it easier to work with JavaScript.

Defining Types

You can use a wide variety of design patterns in JavaScript. However, some make it difficult for types to be

inferred automatically (e.g., patterns that use dynamic programming). To handle these cases, TypeScript

supports an extension of JavaScript, allowing you to specify types explicitly.

For example, to create an object with an inferred type including name: string and id: number , you

can write:

const user = {

 name: "Hayes",

 id: 0

};

You can explicitly define the shape with an interface:

interface User {

 name: string;

 id: number;

}

3

https://www.typescriptlang.org/play/#code/DYUwLgBAFizA9gdXgJ2AEwgXggIgBKwITJrq4DcAUAPQ0QQB6A-EA

Then declare that a JavaScript object conforms to this shape:

const user: User = {

 name: "Hayes",

 id: 0

};

TypeScript warns if the object doesnʼt match the interface.

You can also use interfaces with classes:

interface User {

 name: string;

 id: number;

}

class UserAccount {

 name: string;

 id: number;

 constructor(name: string, id: number) {

 this.name = name;

 this.id = id;

 }

}

const user: User = new UserAccount("Murphy", 1);

Interfaces can be used to annotate function parameters and return types:

function deleteUser(user: User) {

 // ...

}

function getAdminUser(): User {

 // ...

}

JavaScript supports primitive types such as boolean , bigint , null , number , string , symbol ,

and undefined , which TypeScript extends with types like any , unknown , never , and void .

TypeScript has two syntax options for defining types: interfaces and type aliases. Preferred is interface ;

use type when specific features are needed.

Composing Types

Types can be combined to form complex types, mainly via unions and generics.

Unions

A union type declares that a variable could be one of several types:

type MyBool = true | false;

Additionally, to describe a value that can be specific string literals:

4

type WindowStates = "open" | "closed" | "minimized";

type LockStates = "locked" | "unlocked";

type PositiveOddNumbersUnderTen = 1 | 3 | 5 | 7 | 9;

Unions are useful in functions:

function getLength(obj: string | string[]) {

 return obj.length;

}

To determine the type of a variable at runtime, use typeof :

Type Predicate

string typeof s === "string"

number typeof n === "number"

boolean typeof b === "boolean"

undefined typeof undefined === "undefined"

function typeof f === "function"

array Array.isArray(a)

Example usage:

function wrapInArray(obj: string | string[]) {

 if (typeof obj === "string") {

 return [obj];

 }

 return obj;

}

Generics

Generics add variables to types, such as in arrays:

type StringArray = Array<string>;

type NumberArray = Array<number>;

type ObjectWithNameArray = Array<{ name: string }>;

You can define your own generic types:

interface Backpack<Type> {

 add: (obj: Type) => void;

 get: () => Type;

}

declare const backpack: Backpack<string>;

const object = backpack.get(); // object is a string

backpack.add(23); // Error: number not assignable to string

Functions can also be generic:

function identity<Type>(arg: Type): Type {

 return arg;

}

Structural Type System

5

TypeScript checks if two objects have the same shape. If they do, they are compatible, regardless of their

explicit types.

interface Point {

 x: number;

 y: number;

}

function logPoint(p: Point) {

 console.log(`${p.x}, ${p.y}`);

}

const point = { x: 12, y: 26 };

logPoint(point); // OK

const point3 = { x: 12, y: 26, z: 89 };

logPoint(point3); // OK, shape matches

const rect = { x: 33, y: 3, width: 30, height: 80 };

logPoint(rect); // OK if shape matches Point, but this object has extra properties

const color = { hex: "#187ABF" };

logPoint(color); // Error: missing x and y properties

Classes and objects also conform to shapes:

class VirtualPoint {

 x: number;

 y: number;

 constructor(x: number, y: number) {

 this.x = x;

 this.y = y;

 }

}

const newVPoint = new VirtualPoint(13, 56);

logPoint(newVPoint); // OK

Next Steps

Read the full Handbook

Explore Playground examples

On this page

Types by Inference

Defining Types

Composing Types

Unions

Generics

Structural Type System

Next Steps

6

https://typescriptlang.org/docs/handbook/intro.html
https://typescriptlang.org/play#show-examples

Additional

The TypeScript docs are an open source project. Help improve these pages by sending a Pull Request.

Last updated: Jun 30, 2025

© 2012-2025 Microsoft

Privacy | Terms of Use

7

https://github.com/microsoft/TypeScript-Website
https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/get-started/TS%20for%20JS%20Programmers.md
https://go.microsoft.com/fwlink/?LinkId=521839
https://go.microsoft.com/fwlink/?LinkID=206977

404
File not found

The site configured at this address does not contain the requested file.

If this is your site, make sure that the filename case matches the URL as well as any file permissions.

For root URLs (like http://example.com/) you must provide an index.html file.

Read the full documentation for more information about using GitHub Pages.

GitHub Status — @githubstatus

8

http://example.com/
https://help.github.com/pages/
https://githubstatus.com/
https://twitter.com/githubstatus

404
File not found

The site configured at this address does not contain the requested file.

If this is your site, make sure that the filename case matches the URL as well as any file permissions.

For root URLs (like http://example.com/) you must provide an index.html file.

Read the full documentation for more information about using GitHub Pages.

GitHub Status — @githubstatus

9

https://help.github.com/pages/
https://githubstatus.com/
https://twitter.com/githubstatus

404
File not found

The site configured at this address does not contain the requested file.

If this is your site, make sure that the filename case matches the URL as well as any file permissions.

For root URLs (like http://example.com/) you must provide an index.html file.

Read the full documentation for more information about using GitHub Pages.

GitHub Status — @githubstatus

10

https://help.github.com/pages/
https://githubstatus.com/
https://twitter.com/githubstatus

404
File not found

The site configured at this address does not contain the requested file.

If this is your site, make sure that the filename case matches the URL as well as any file permissions.

For root URLs (like http://example.com/) you must provide an index.html file.

Read the full documentation for more information about using GitHub Pages.

GitHub Status — @githubstatus

11

https://help.github.com/pages/
https://githubstatus.com/
https://twitter.com/githubstatus

TypeScript for the New
Programmer
Congratulations on choosing TypeScript as one of your first languages — youʼre already making good

decisions!

Youʼve probably already heard that TypeScript is a “flavor” or “variant” of JavaScript. The relationship between

TypeScript (TS) and JavaScript (JS) is rather unique among modern programming languages, so learning more

about this relationship will help you understand how TypeScript adds to JavaScript.

What is JavaScript? A Brief History

JavaScript (also known as ECMAScript) started its life as a simple scripting language for browsers. At the time

it was invented, it was expected to be used for short snippets of code embedded in a web page — writing more

than a few dozen lines of code would have been somewhat unusual. Due to this, early web browsers executed

such code pretty slowly. Over time, though, JS became more and more popular, and web developers started

using it to create interactive experiences.

Web browser developers responded to this increased JS usage by optimizing their execution engines (dynamic

compilation) and extending what could be done with it (adding APIs), which in turn made web developers use

it even more. On modern websites, your browser is frequently running applications that span hundreds of

thousands of lines of code. This is the long and gradual growth of “the web,” starting as a simple network of

static pages, and evolving into a platform for rich applications of all kinds.

More than this, JS has become popular enough to be used outside the context of browsers, such as

implementing JS servers using node.js. The “run anywhere” nature of JS makes it an attractive choice for

cross-platform development. There are many developers these days that use only JavaScript to program their

entire stack!

To summarize, we have a language that was designed for quick uses, and then grew to a full-fledged tool to

write applications with millions of lines. Every language has its own quirks — oddities and surprises, and

JavaScript s̓ humble beginning makes it have many of these. Some examples:

JavaScript s̓ equality operator (==) coerces its operands, leading to unexpected behavior:

if ("" == 0) {

 // It is! But why??

}

if (1 < x < 3) {

 // True for *any* value of x!

}

JavaScript also allows accessing properties which arenʼt present:

const obj = { width: 10, height: 15 };

// Why is this NaN? Spelling is hard!

const area = obj.width * obj.heigth;

Most programming languages would throw an error when these sorts of errors occur, some would do so

during compilation — before any code is running. When writing small programs, such quirks are annoying but

manageable; when writing applications with hundreds or thousands of lines of code, these constant surprises

are a serious problem.

TypeScript: A Static Type Checker

12

We said earlier that some languages wouldnʼt allow those buggy programs to run at all. Detecting errors in

code without running it is referred to as static checking. Determining what s̓ an error and what s̓ not based on

the kinds of values being operated on is known as static type checking.

TypeScript checks a program for errors before execution, and does so based on the kinds of values, making it a

static type checker. For example, the last example above has an error because of the type of obj . Here s̓ the

error TypeScript found:

Try the example:

const obj = { width: 10, height: 15 };

const area = obj.width * obj.heigth; // Error: Property 'heigth' does not exist on typ

A Typed Superset of JavaScript

How does TypeScript relate to JavaScript, though?

Syntax

TypeScript is a language that is a superset of JavaScript: JS syntax is therefore legal TS. Syntax refers to the way

we write text to form a program. For example, this code has a syntax error because it s̓ missing a) :

let a = (4;

// ')' expected. (TS1005)

// Try: [link](https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygIwAYMFYBQA

TypeScript doesnʼt consider any JavaScript code to be an error because of its syntax. This means you can take

any working JavaScript code and put it in a TypeScript file without worrying about exactly how it is written.

Types

However, TypeScript is a typed superset, meaning that it adds rules about how different kinds of values can be

used. The earlier error about obj.heigth was not a syntax error: it is an error of using some kind of value

(a type) in an incorrect way.

As another example, this is JavaScript code that you can run in your browser, and it will log a value:

console.log(4 / []);

This syntactically-legal program logs Infinity . TypeScript, though, considers division of number by an

array to be a nonsensical operation, and will issue an error:

Try this example:

console.log(4 / []);

// Error: The right-hand side of an arithmetic operation must be of type 'any', 'numbe

It s̓ possible you really did intend to divide a number by an array, perhaps just to see what happens, but most of

the time, though, this is a programming mistake. TypeScript s̓ type checker is designed to allow correct

programs through while still catching as many common errors as possible.

(Later, weʼll learn about settings you can use to configure how strictly TypeScript checks your code.)

If you move some code from a JavaScript file to a TypeScript file, you might see type errors depending on how

the code is written. These may be legitimate problems with the code, or TypeScript being overly conservative.

Throughout this guide weʼll demonstrate how to add various TypeScript syntax to eliminate such errors.

13

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYMEYBQBjOAO0QBdQ4AjAK1AF5QBvUAdwEsATUgC1WwAYANKG6Q2Ac26k+GUAF8A3AWJlQAQ2iQ19CjQB07Lt1AAqXdT2iJPBUA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYBsGBQBjOAO0TgBtIA6MuAcwAoAWUMAbQF0BKAbiA

Runtime Behavior

TypeScript is also a programming language that preserves the runtime behavior of JavaScript. For example,

dividing by zero in JavaScript produces Infinity instead of throwing a runtime exception. As a principle,

TypeScript never changes the runtime behavior of JavaScript code.

This means that if you move code from JavaScript to TypeScript, it is guaranteed to run the same way, even if

TypeScript thinks that the code has type errors.

Keeping the same runtime behavior as JavaScript is a foundational promise of TypeScript because it means

you can easily transition between the two languages without worrying about subtle differences that might

make your program stop working.

Erased Types

Roughly speaking, once TypeScript s̓ compiler is done with checking your code, it erases the types to produce

the resulting “compiled” code. This means that once your code is compiled, the resulting plain JS code has no

type information.

This also means that TypeScript never changes the behavior of your program based on the types it inferred.

The bottom line is that while you might see type errors during compilation, the type system itself has no

bearing on how your program works when it runs.

Finally, TypeScript doesnʼt provide any additional runtime libraries. Your programs will use the same standard

library (or external libraries) as JavaScript programs, so there s̓ no additional TypeScript-specific framework to

learn.

Learning JavaScript and TypeScript

We frequently see the question “Should I learn JavaScript or TypeScript?”.

The answer is that you canʼt learn TypeScript without learning JavaScript! TypeScript shares syntax and

runtime behavior with JavaScript, so anything you learn about JavaScript is helping you learn TypeScript at the

same time.

There are many, many resources available for programmers to learn JavaScript; you should not ignore these

resources if youʼre writing TypeScript. For example, there are about 20 times more StackOverflow questions

tagged javascript than typescript , but all of the javascript questions also apply to TypeScript.

If you find yourself searching for something like “how to sort a list in TypeScript”, remember: TypeScript is

JavaScript s̓ runtime with a compile-time type checker. The way you sort a list in TypeScript is the same way

you do so in JavaScript. If you find a resource that uses TypeScript directly, that s̓ great too, but donʼt limit

yourself to thinking you need TypeScript-specific answers for everyday questions about how to accomplish

runtime tasks.

Next Steps

This was a brief overview of the syntax and tools used in everyday TypeScript. From here, you can:

Learn some of the JavaScript fundamentals, we recommend either:

Microsoft s̓ JavaScript Resources

JavaScript guide at the Mozilla Web Docs

Continue to TypeScript for JavaScript Programmers

Read the full Handbook from start to finish

Explore the Playground examples

14

https://developer.microsoft.com/javascript/
https://developer.mozilla.org/docs/Web/JavaScript/Guide
https://docs/handbook/typescript-in-5-minutes.html
https://tsdoc.org/docs/handbook/intro.html
https://www.typescriptlang.org/play#show-examples

On this page

What is JavaScript? A Brief History

TypeScript: A Static Type Checker

A Typed Superset of JavaScript

Learning JavaScript and TypeScript

Next Steps

Is this page helpful?

Yes No

Help us improve these pages

The TypeScript docs are an open source project. Help us improve these pages by sending a Pull Request ❤

Contributors to this page:

OT, EB, XL, NS, AO, 8+

Last updated: Jun 30, 2025

Using TypeScript

Get Started

Download

Community

Playground

TSConfig Reference

Code Samples

Why TypeScript

Design

Community

Get Help

Blog

GitHub Repo

Community Chat

@TypeScript

Mastodon

Stack Overflow

Web Repo

© 2012-2025 Microsoft

Privacy

Terms of Use

15

https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/get-started/TS%20for%20the%20New%20Programmer.md
https://www.typescriptlang.org/docs/
https://www.typescriptlang.org/download
https://www.typescriptlang.org/community/
https://www.typescriptlang.org/play/
https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/play#show-examples
https://www.typescriptlang.org/about/
https://www.typescriptlang.org/branding/
https://www.typescriptlang.org/community/
https://devblogs.microsoft.com/typescript/
https://github.com/microsoft/TypeScript/#readme
https://discord.gg/typescript
https://twitter.com/TypeScript
https://fosstodon.org/@TypeScript
https://stackoverflow.com/questions/tagged/typescript
https://github.com/microsoft/TypeScript-Website
https://go.microsoft.com/fwlink/?LinkId=521839
https://go.microsoft.com/fwlink/?LinkID=206977

TypeScript for the New
Programmer
Congratulations on choosing TypeScript as one of your first languages — youʼre already making good

decisions!

Youʼve probably already heard that TypeScript is a “flavor” or “variant” of JavaScript.

The relationship between TypeScript (TS) and JavaScript (JS) is rather unique among modern programming

languages, so learning more about this relationship will help you understand how TypeScript adds to

JavaScript.

What is JavaScript? A Brief History

JavaScript (also known as ECMAScript) started its life as a simple scripting language for browsers.

At the time it was invented, it was expected to be used for short snippets of code embedded in a web page —

writing more than a few dozen lines of code would have been somewhat unusual.

Due to this, early web browsers executed such code pretty slowly.

Over time, though, JS became more and more popular, and web developers started using it to create

interactive experiences.

Web browser developers responded to this increased JS usage by optimizing their execution engines (dynamic

compilation) and extending what could be done with it (adding APIs), which in turn made web developers use

it even more.

On modern websites, your browser is frequently running applications that span hundreds of thousands of

lines of code.

This is the long and gradual growth of “the web,” starting as a simple network of static pages, and evolving into

a platform for rich applications of all kinds.

More than this, JS has become popular enough to be used outside the context of browsers, such as

implementing JS servers using node.js.

The “run anywhere” nature of JS makes it an attractive choice for cross-platform development.

There are many developers these days that use only JavaScript to program their entire stack!

To summarize, we have a language that was designed for quick uses, and then grew to a full-fledged tool to

write applications with millions of lines.

Every language has its own quirks — oddities and surprises, and JavaScript s̓ humble beginning makes it have

many of these. Some examples:

JavaScript s̓ equality operator (==) coerces its operands, leading to unexpected behavior:

if ("" == 0) {

 // It is! But why??

}

if (1 < x < 3) {

 // True for *any* value of x!

}

JavaScript also allows accessing properties which arenʼt present:

const obj = { width: 10, height: 15 };

// Why is this NaN? Spelling is hard!

const area = obj.width * obj.heigth;

16

Most programming languages would throw an error when these sorts of errors occur, some would do so

during compilation — before any code is running.

When writing small programs, such quirks are annoying but manageable; when writing applications with

hundreds or thousands of lines, these constant surprises are a serious problem.

TypeScript: A Static Type Checker

We said earlier that some languages wouldnʼt allow those buggy programs to run at all.

Detecting errors in code without running it is referred to as static checking.

Determining what s̓ an error and what s̓ not based on the kinds of values being operated on is known as static

type checking.

TypeScript checks a program for errors before execution, and does so based on the kinds of values, making it a

static type checker.

For example, the last example above has an error because of the type of obj .

Here s̓ the error TypeScript found:

const obj = { width: 10, height: 15 };

const area = obj.width * obj.heigth;

// Property 'heigth' does not exist on type '{ width: number; height: number; }'. Did

// 2551

A Typed Superset of JavaScript

How does TypeScript relate to JavaScript, though?

Syntax

TypeScript is a language that is a superset of JavaScript: JS syntax is therefore legal TS.

Syntax refers to the way we write text to form a program.

For example, this code has a syntax error because it s̓ missing a) :

let a = (4; // ')' expected.

TypeScript doesnʼt consider any JavaScript code to be an error because of its syntax.

This means you can take any working JavaScript code and put it in a TypeScript file without worrying about

exactly how it is written.

Types

However, TypeScript is a typed superset, meaning that it adds rules about how different kinds of values can be

used.

The earlier error about obj.heigth was not a syntax error: it is an error of using some kind of value (a type)

in an incorrect way.

As another example, this is JavaScript code that you can run in your browser, and it will log a value:

console.log(4 / []);

This syntactically-legal program logs Infinity .

TypeScript, though, considers division of number by an array to be a nonsensical operation, and will issue an

error:

console.log(4 / []);

// The right-hand side of an arithmetic operation must be of type 'any', 'number', 'bi

// 2363

It s̓ possible you really did intend to divide a number by an array, perhaps just to see what happens, but most of

the time, though, this is a programming mistake.

17

TypeScript s̓ type checker is designed to allow correct programs through while still catching as many common

errors as possible.

(Later, weʼll learn about settings you can use to configure how strictly TypeScript checks your code.)

If you move some code from a JavaScript file to a TypeScript file, you might see type errors depending on how

the code is written.

These may be legitimate problems with the code, or TypeScript being overly conservative.

Throughout this guide weʼll demonstrate how to add various TypeScript syntax to eliminate such errors.

Runtime Behavior

TypeScript is also a programming language that preserves the runtime behavior of JavaScript.

For example, dividing by zero in JavaScript produces Infinity instead of throwing a runtime exception.

As a principle, TypeScript never changes the runtime behavior of JavaScript code.

This means that if you move code from JavaScript to TypeScript, it is guaranteed to run the same way, even if

TypeScript thinks that the code has type errors.

Keeping the same runtime behavior as JavaScript is a foundational promise of TypeScript because it means

you can easily transition between the two languages without worrying about subtle differences that might

make your program stop working.

Erased Types

Roughly speaking, once TypeScript s̓ compiler is done with checking your code, it erases the types to produce

the resulting “compiled” code.

This means that once your code is compiled, the resulting plain JS code has no type information.

This also means that TypeScript never changes the behavior of your program based on the types it inferred.

The bottom line is that while you might see type errors during compilation, the type system itself has no

bearing on how your program works when it runs.

Finally, TypeScript doesnʼt provide any additional runtime libraries.

Your programs will use the same standard library (or external libraries) as JavaScript programs, so there s̓ no

additional TypeScript-specific framework to learn.

Learning JavaScript and TypeScript

We frequently see the question “Should I learn JavaScript or TypeScript?”.

The answer is that you canʼt learn TypeScript without learning JavaScript!

TypeScript shares syntax and runtime behavior with JavaScript, so anything you learn about JavaScript is

helping you learn TypeScript at the same time.

There are many, many resources available for programmers to learn JavaScript; you should not ignore these

resources if youʼre writing TypeScript.

For example, there are about 20 times more StackOverflow questions tagged javascript than

typescript , but all of the javascript questions also apply to TypeScript.

If you find yourself searching for something like “how to sort a list in TypeScript”, remember: TypeScript is

JavaScript s̓ runtime with a compile-time type checker.

The way you sort a list in TypeScript is the same way you do so in JavaScript.

If you find a resource that uses TypeScript directly, that s̓ great too, but donʼt limit yourself to thinking you

need TypeScript-specific answers for everyday questions about how to accomplish runtime tasks.

Next Steps

18

This was a brief overview of the syntax and tools used in everyday TypeScript.

From here, you can:

Learn some of the JavaScript fundamentals, we recommend either:

Microsoft s̓ JavaScript Resources

JavaScript guide at the Mozilla Web Docs

Continue to TypeScript for JavaScript Programmers

Read the full Handbook from start to finish

Explore the Playground examples

On this page

What is JavaScript? A Brief History

TypeScript: A Static Type Checker

A Typed Superset of JavaScript

Learning JavaScript and TypeScript

Next Steps

Is this page helpful?

Yes No

The TypeScript docs are an open source project. Help us improve these pages by sending a Pull Request ❤

Contributors to this page:

OT, EB, XL, NS, AO, 8+

Last updated: Jun 30, 2025

© 2012-2025 Microsoft

Privacy | Terms of Use

19

https://developer.microsoft.com/javascript/
https://developer.mozilla.org/docs/Web/JavaScript/Guide
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/play#show-examples
https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/get-started/TS%20for%20the%20New%20Programmer.md
https://go.microsoft.com/fwlink/?LinkId=521839
https://go.microsoft.com/fwlink/?LinkID=206977

TypeScript for the New
Programmer
Congratulations on choosing TypeScript as one of your first languages — youʼre already making good

decisions!

Youʼve probably already heard that TypeScript is a “flavor” or “variant” of JavaScript. The relationship between

TypeScript (TS) and JavaScript (JS) is rather unique among modern programming languages, so learning more

about this relationship will help you understand how TypeScript adds to JavaScript.

What is JavaScript? A Brief History

JavaScript (also known as ECMAScript) started its life as a simple scripting language for browsers.

At the time it was invented, it was expected to be used for short snippets of code embedded in a web page —

writing more than a few dozen lines of code would have been somewhat unusual.

Due to this, early web browsers executed such code pretty slowly.

Over time, though, JS became more and more popular, and web developers started using it to create

interactive experiences.

Web browser developers responded to this increased JS usage by optimizing their execution engines (dynamic

compilation) and extending what could be done with it (adding APIs), which in turn made web developers use

it even more.

On modern websites, your browser is frequently running applications that span hundreds of thousands of

lines of code.

This is the long and gradual growth of “the web”, starting as a simple network of static pages, and evolving into

a platform for rich applications of all kinds.

More than this, JS has become popular enough to be used outside the context of browsers, such as

implementing JS servers using node.js.

The “run anywhere” nature of JS makes it an attractive choice for cross-platform development.

There are many developers these days that use only JavaScript to program their entire stack!

To summarize, we have a language that was designed for quick uses, and then grew to a full-fledged tool to

write applications with millions of lines.

Every language has its own quirks — oddities and surprises, and JavaScript s̓ humble beginning makes it have

many of these. Some examples:

JavaScript s̓ equality operator (==) coerces its operands, leading to unexpected behavior:

if ("" == 0) {

 // It is! But why??

}

if (1 < x < 3) {

 // True for *any* value of x!

}

JavaScript also allows accessing properties which arenʼt present:

const obj = { width: 10, height: 15 };

// Why is this NaN? Spelling is hard!

const area = obj.width * obj.heigth;

Most programming languages would throw an error when these sorts of errors occur, some would do so

during compilation — before any code is running.

20

When writing small programs, such quirks are annoying but manageable; when writing applications with

hundreds or thousands of lines of code, these constant surprises are a serious problem.

TypeScript: A Static Type Checker

We said earlier that some languages wouldnʼt allow those buggy programs to run at all.

Detecting errors in code without running it is referred to as static checking.

Determining what s̓ an error and what s̓ not based on the kinds of values being operated on is known as static

type checking.

TypeScript checks a program for errors before execution, and does so based on the kinds of values, making it a

static type checker.

For example, the last example above has an error because of the type of obj .

Here s̓ the error TypeScript found:

Try it on the TypeScript playground

const obj = { width: 10, height: 15 };

const area = obj.width * obj.heigth;

// Property 'heigth' does not exist on type '{ width: number; height: number; }'. Did

A Typed Superset of JavaScript

How does TypeScript relate to JavaScript, though?

Syntax

TypeScript is a language that is a superset of JavaScript: JS syntax is therefore legal TS.

Syntax refers to the way we write text to form a program.

For example, this code has a syntax error because it s̓ missing a) :

let a = (4

// ') expected.'

TypeScript doesnʼt consider any JavaScript code to be an error because of its syntax.

This means you can take any working JavaScript code and put it in a TypeScript file without worrying about

exactly how it is written.

Types

However, TypeScript is a typed superset, meaning that it adds rules about how different kinds of values can be

used.

The earlier error about obj.heigth was not a syntax error: it is an error of using some kind of value (a type)

in an incorrect way.

As another example, this is JavaScript code that you can run in your browser, and it will log a value:

console.log(4 / []);

This syntactically-legal program logs Infinity .

TypeScript, though, considers division of number by an array to be a nonsensical operation, and will issue an

error:

Try it on the TypeScript playground

console.log(4 / []);

// The right-hand side of an arithmetic operation must be of type 'any', 'number', 'bi

21

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYMEYBQBjOAO0QBdQ4AjAK1AF5QBvUAdwEsATUgC1WwAYANKG6Q2Ac26k+GUAF8A3AWJlQAQ2iQ19CjQB07Lt1AAqXdT2iJPBUA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYBsGBQBjOAO0TgBtIA6MuAcwAoAWUMAbQF0BKAbiA

It s̓ possible you really did intend to divide a number by an array, perhaps just to see what happens, but most of

the time, though, this is a programming mistake.

TypeScript s̓ type checker is designed to allow correct programs through while still catching as many common

errors as possible.

(Later, weʼll learn about settings you can use to configure how strictly TypeScript checks your code.)

If you move some code from a JavaScript file to a TypeScript file, you might see type errors depending on how

the code is written.

These may be legitimate problems with the code, or TypeScript being overly conservative.

Throughout this guide weʼll demonstrate how to add various TypeScript syntax to eliminate such errors.

Runtime Behavior

TypeScript is also a programming language that preserves the runtime behavior of JavaScript.

For example, dividing by zero in JavaScript produces Infinity instead of throwing a runtime exception.

As a principle, TypeScript never changes the runtime behavior of JavaScript code.

This means that if you move code from JavaScript to TypeScript, it is guaranteed to run the same way, even if

TypeScript thinks that the code has type errors.

Keeping the same runtime behavior as JavaScript is a foundational promise of TypeScript because it means

you can easily transition between the two languages without worrying about subtle differences that might

make your program stop working.

Erased Types

Roughly speaking, once TypeScript s̓ compiler is done with checking your code, it erases the types to produce

the resulting “compiled” code.

This means that once your code is compiled, the resulting plain JS code has no type information.

This also means that TypeScript never changes the behavior of your program based on the types it inferred.

The bottom line is that while you might see type errors during compilation, the type system itself has no

bearing on how your program works when it runs.

Finally, TypeScript doesnʼt provide any additional runtime libraries.

Your programs will use the same standard library (or external libraries) as JavaScript programs, so there s̓ no

additional TypeScript-specific framework to learn.

Learning JavaScript and TypeScript

We frequently see the question “Should I learn JavaScript or TypeScript?”.

The answer is that you canʼt learn TypeScript without learning JavaScript!

TypeScript shares syntax and runtime behavior with JavaScript, so anything you learn about JavaScript is

helping you learn TypeScript at the same time.

There are many, many resources available for programmers to learn JavaScript; you should not ignore these

resources if youʼre writing TypeScript.

For example, there are about 20 times more StackOverflow questions tagged javascript than

typescript , but all of the javascript questions also apply to TypeScript.

If you find yourself searching for something like “how to sort a list in TypeScript”, remember: TypeScript is

JavaScript s̓ runtime with a compile-time type checker.

The way you sort a list in TypeScript is the same way you do so in JavaScript.

If you find a resource that uses TypeScript directly, that s̓ great too, but donʼt limit yourself to thinking you

need TypeScript-specific answers for everyday questions about how to accomplish runtime tasks.

22

Next Steps

This was a brief overview of the syntax and tools used in everyday TypeScript. From here, you can:

Learn some of the JavaScript fundamentals, we recommend either:

Microsoft s̓ JavaScript Resources

JavaScript guide at the Mozilla Web Docs

Continue to TypeScript for JavaScript Programmers

Read the full Handbook from start to finish

Explore the Playground examples

On this page

What is JavaScript? A Brief History

TypeScript: A Static Type Checker

A Typed Superset of JavaScript

Learning JavaScript and TypeScript

Next Steps

Is this page helpful?

Yes | No

The TypeScript docs are an open source project. Help us improve these pages by sending a Pull Request ❤

Contributors to this page:

OT, EB, XL, NS, AO, 8+

Last updated: Jun 30, 2025

23

https://developer.microsoft.com/javascript/
https://developer.mozilla.org/docs/Web/JavaScript/Guide
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/play#show-examples
https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/get-started/TS%20for%20the%20New%20Programmer.md
https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/get-started/TS%20for%20the%20New%20Programmer.md

More on Functions
Functions are the basic building block of any application, whether theyʼre local functions, imported from

another module, or methods on a class. Theyʼre also values, and just like other values, TypeScript has many

ways to describe how functions can be called. Let s̓ learn about how to write types that describe functions.

Function Type Expressions

The simplest way to describe a function is with a function type expression. These types are syntactically similar

to arrow functions:

function greeter(fn: (a: string) => void) {

 fn("Hello, World");

}

function printToConsole(s: string) {

 console.log(s);

}

greeter(printToConsole);

The syntax (a: string) => void means “a function with one parameter, named a , of type string ,

that doesnʼt have a return value”. Just like with function declarations, if a parameter type isnʼt specified, it s̓

implicitly any .

Note that the parameter name is required. The function type (string) => void means “a

function with a parameter of type string ,” but without a name, which is invalid.

Call Signatures

In JavaScript, functions can have properties in addition to being callable. However, the function type

expression syntax doesnʼt allow for declaring properties. If we want to describe something callable with

properties, we can write a call signature in an object type:

type DescribableFunction = {

 description: string;

 (someArg: number): boolean;

};

function doSomething(fn: DescribableFunction) {

 console.log(fn.description + " returned " + fn(6));

}

function myFunc(someArg: number) {

 return someArg > 3;

}

myFunc.description = "default description";

doSomething(myFunc);

Note that the syntax is slightly different compared to a function type expression — use : between the

parameter list and the return type rather than => .

24

Construct Signatures

JavaScript functions can also be invoked with the new operator. TypeScript refers to these as constructors

because they usually create a new object. You can write a construct signature by adding the new keyword in

front of a call signature:

type SomeConstructor = {

 new (s: string): SomeObject;

};

function fn(ctor: SomeConstructor) {

 return new ctor("hello");

}

Some objects, like JavaScript s̓ Date object, can be called with or without new . You can combine call and

construct signatures in the same type arbitrarily:

interface CallOrConstruct {

 (n?: number): string;

 new (s: string): Date;

}

function fn(ctor: CallOrConstruct) {

 // Passing an argument of type `number` to `ctor` matches the first definition

 // Passing an argument of type `string` to `ctor` matches the second definition

 console.log(ctor(10));

 console.log(new ctor("10"));

}

fn(Date);

Generic Functions

It s̓ common to write functions where the types of the input relate to the type of the output, or where the types

of two inputs are related in some way. Let s̓ consider a function that returns the first element of an array:

function firstElement(arr: any[]) {

 return arr[0];

}

This function does its job, but has the return type any . It s̓ better if the function returned the type of the

array element:

function firstElement<Type>(arr: Type[]): Type | undefined {

 return arr[0];

}

By adding a type parameter Type to this function and using it in two places, weʼve created a link between

the input of the function (the array) and the output (the return value). Now, when we call it:

const s = firstElement(["a", "b", "c"]); // s is of type 'string'

const n = firstElement([1, 2, 3]); // n is of type 'number'

const u = firstElement([]); // u is of type 'undefined'

TypeScript infers the types automatically, which shows how powerful generics can be.

25

Inference

Note that we didnʼt have to specify Type in this sample. The type was inferred — chosen automatically — by

TypeScript.

Constraints

Sometimes, you want to relate two values but only operate on a certain subset of values. You can use a

constraint to limit the kinds of types that a type parameter can accept. For example, a function that returns the

longer of two values requires the values to have a length property:

function longest<Type extends { length: number }>(a: Type, b: Type) {

 if (a.length >= b.length) {

 return a;

 } else {

 return b;

 }

}

// longerArray is of type 'number[]'

const longerArray = longest([1, 2], [1, 2, 3]);

// longerString is of type 'alice' | 'bob'

const longerString = longest("alice", "bob");

// Error! Numbers don't have a 'length' property

const notOK = longest(10, 100);

Working with Constrained Values

Beware of certain errors when working with generic constraints. For example:

function minimumLength<Type extends { length: number }>(

 obj: Type,

 minimum: number

): Type {

 if (obj.length >= minimum) {

 return obj;

 } else {

 return { length: minimum }; // Error here

 }

}

This code appears correct because Type is constrained to { length: number } , and the function

either returns Type or a value matching that constraint. However, the function promises to return the same

kind of object as was passed in, not just some object matching the constraint. Returning { length:

minimum } violates the type:

const arr = minimumLength([1, 2, 3], 6); // Error: Type '{ length: number }' is not as

console.log(arr.slice(0));

Common Errors when Writing Generic
Functions

26

Declaring unnecessary constraints

Writing constraints that are too broad or too narrow

Not relating input and output types properly

Overusing overloads when union types suffice

For more details and examples, see the full documentation.

27

Utility Types
TypeScript provides several utility types to facilitate common type transformations. These utilities are

available globally.

Awaited<Type>

Released: 4.5

This type is meant to model operations like await in async functions, or the .then() method on

Promise s - specifically, the way that they recursively unwrap Promise s.

Example

type A = Awaited<Promise<string>>; // A = string

type B = Awaited<Promise<Promise<number>>>; // B = number

type C = Awaited<boolean | Promise<number>>; // C = number | boolean

Try

Partial<Type>

Released: 2.1

Constructs a type with all properties of Type set to optional. This utility will return a type that represents all

subsets of a given type.

Example

interface Todo {

 title: string;

 description: string;

}

function updateTodo(todo: Todo, fieldsToUpdate: Partial<Todo>) {

 return { ...todo, ...fieldsToUpdate };

}

const todo1 = {

 title: "organize desk",

 description: "clear clutter",

};

const todo2 = updateTodo(todo1, {

 description: "throw out trash",

});

Try

Required<Type>

Released: 2.8

28

https://docs/handbook/release-notes/typescript-4-5.html#the-awaited-type-and-promise-improvements
https://www.typescriptlang.org/play/#code/C4TwDgpgBAglC8sDuBDAlsCATAPABQCcB7AWzQGcIdzgC0A7AcwD5mBuAKAHouo+A9APwcOoSFABCCZOky5CpClQVlKOegFcSAIwgFW7brwHDR4aAGFpMVBmw5tRIgBsIKelAA+UFUvVbdfUMePighIA
https://docs/handbook/release-notes/typescript-2-1.html#partial-readonly-record-and-pick
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgCoHsAm7kG8BQyyYwYANhAFzIDOYUoA5gNyHKYQ0IMAOJ6IanQYgW+AL758MAK4gE-EMhk9McSBmwAKMFnTVN6ADTIYwCGUw0MAVVXqqyAApwoJOGQA8hgHwBKPDYoCDAZKCVcZAA6GN1sExioswsrW3tIZHFWSXwEATpiPQBGZABeQKISckcAInQoRjgQYAAvFA4aAGsaozYO7mA+YAFqGoQKV2RxmTBIKB6JVlz8sELsACYy5XSIQx1ikwIift5FUbAACyh0AHdkdBniKDgaC4XxP2YgA
https://docs/handbook/release-notes/typescript-2-8.html#improved-control-over-mapped-type-modifiers

Constructs a type consisting of all properties of Type set to required. The opposite of Partial .

Example

interface Props {

 a?: number;

 b?: string;

}

const obj: Props = { a: 5 };

const obj2: Required<Props> = { a: 5 }; // Error: Property 'b' is missing in type '{ a

Try

Readonly<Type>

Released: 2.1

Constructs a type with all properties of Type set to readonly , meaning the properties of the constructed

type cannot be reassigned.

Example

interface Todo {

 title: string;

}

const todo: Readonly<Todo> = {

 title: "Delete inactive users",

};

todo.title = "Hello"; // Error: Cannot assign to 'title' because it is a read-only pro

In this utility, the object s̓ properties become immutable, useful for representing frozen objects.

Example with Object.freeze

function freeze<Type>(obj: Type): Readonly<Type>;

Record<Keys, Type>

Released: 2.1

Constructs an object type whose property keys are Keys and whose property values are Type . It can be

used to map the properties of a type to another type.

Example

type CatName = "miffy" | "boris" | "mordred";

interface CatInfo {

 age: number;

 breed: string;

}

29

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYAsAGAUAJYB2ALjAGYCGAxpKACpwAmcoA3nqKCQSQDaRUiEtGIBzANx4AvnjzU4RYd2ZxUAJUiUWRPgE8APIxYA+UAF52nbrwGoARABFIAsqGI0eANzoBXRDCI9gA0MlJ4JKoAdDz8dJb2ABIufHD2EkA
https://docs/handbook/release-notes/typescript-2-1.html#partial-readonly-record-and-pick
https://docs/handbook/release-notes/typescript-2-1.html#partial-readonly-record-and-pick

const cats: Record<CatName, CatInfo> = {

 miffy: { age: 10, breed: "Persian" },

 boris: { age: 5, breed: "Maine Coon" },

 mordred: { age: 16, breed: "British Shorthair" },

};

Try

Pick<Type, Keys>

Released: 2.1

Constructs a type by selecting a set of properties Keys from Type .

Example

interface Todo {

 title: string;

 description: string;

 completed: boolean;

}

type TodoPreview = Pick<Todo, "title" | "completed">;

const todo: TodoPreview = {

 title: "Clean room",

 completed: false,

};

Try

30

https://www.typescriptlang.org/play/#code/C4TwDgpgBAwghsAcnAttAvFARCglgM3xCygB9sAjAewCdcBnE8nWgExolawG4AoX3ADtgEGvjgBjaPGABJQfipQA3ryhQ4AcwgAuKIICuKCqL7qKHTnvrA6gzXwC+-CVUE2oEhPT0AlCK40rAA8MshoADSwCPKKAHxQmKrqeIQgesoa2noAjAAMURYQVtgACqL0uHCCJI4RalDUdD4qWbpQAKyFlqx6WACycELSVG619SlsHL2tWu05AGzdxTNYAEJ0wAwAFlAAytu0wNtDNOO8jny8XsD0AHRNDHwA9M9QAHoA-EA
https://docs/handbook/release-notes/typescript-2-1.html#partial-readonly-record-and-pick
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgCoHsAm7kG8BQyyYwYANhAFzIDOYUoA5gNyHKYQ0IMAOJ6IanQYgWbBOgC2PCpEzUARunQU4IVkW4Q4cgIJhqIAK6SF0VgF98+MAE8eKDNgAKUCADdgEAO7IAvMgA8pKkADxO6AA0yABEHFy8-CAxAHys+BIgdMRY6NQRrh5evgEERCTkVLEAwqogyFDKkjGR4lIyEHLU8GQ0EK2abjoQmPrUAIwAbOMArDMALPMATDNLAOxrAAytFulguawA9IfIAHoA-NZ2Dmi5AJIgMDgBwWER0TES0rIjMcgAPrEtMNRmBUulMtl9tgHk98vdHs88GwKhRqDFnMAEABrZBGHjIbHATA0FpseLcYB8YACdEAaVAHCgjDgUEg9QQZHQfRoyB0yBmPGaOz2CKeRxOFyAA

404
File not found

The site configured at this address does not contain the requested file.

If this is your site, make sure that the filename case matches the URL as well as any file permissions.

For root URLs (like http://example.com/) you must provide an index.html file.

Read the full documentation for more information about using GitHub Pages.

GitHub Status — @githubstatus

31

https://help.github.com/pages/
https://githubstatus.com/
https://twitter.com/githubstatus

What is a tsconfig.json

Overview

The presence of a tsconfig.json file in a directory indicates that the directory is the root of a TypeScript

project.

The tsconfig.json file specifies the root files and the compiler options required to compile the project.

JavaScript projects can use a jsconfig.json file instead, which acts almost the same but has some

JavaScript-related compiler flags enabled by default.

A project is compiled in one of the following ways:

By invoking tsc with no input files, in which case the compiler searches for the tsconfig.json

file starting in the current directory and continuing up the parent directory chain.

By invoking tsc with no input files and a --project (or just -p) command line option that

specifies the path of a directory containing a tsconfig.json file, or a path to a valid .json file

containing the configurations.

When input files are specified on the command line, tsconfig.json files are ignored.

Examples

Using the files property

{

 "compilerOptions": {

 "module": "commonjs",

 "noImplicitAny": true,

 "removeComments": true,

 "preserveConstEnums": true,

 "sourceMap": true

 },

 "files": [

 "core.ts",

 "sys.ts",

 "types.ts",

 "scanner.ts",

 "parser.ts",

 "utilities.ts",

 "binder.ts",

 "checker.ts",

 "emitter.ts",

 "program.ts",

 "commandLineParser.ts",

 "tsc.ts",

 "diagnosticInformationMap.generated.ts"

]

}

Using the include and exclude properties

32

{

 "compilerOptions": {

 "module": "system",

 "noImplicitAny": true,

 "removeComments": true,

 "preserveConstEnums": true,

 "outFile": "../../built/local/tsc.js",

 "sourceMap": true

 },

 "include": ["src/**/*"],

 "exclude": ["**/*.spec.ts"]

}

TSConfig Bases

Depending on the JavaScript runtime environment which you intend to run your code in, there may be a base

configuration which you can use at github.com/tsconfig/bases.

These are tsconfig.json files which your project extends from, simplifying your tsconfig.json by

handling runtime support.

For example, if you are writing a project which uses Node.js version 12 and above, you could use the npm

module @tsconfig/node12 :

{

 "extends": "@tsconfig/node12/tsconfig.json",

 "compilerOptions": {

 "preserveConstEnums": true

 },

 "include": ["src/**/*"],

 "exclude": ["**/*.spec.ts"]

}

This allows your tsconfig.json to focus on your specific choices, not on runtime mechanics. Several

bases are available, and the community can add more.

Details

The compilerOptions property can be omitted, in which case the compiler s̓ defaults are used.

See the full list of supported Compiler Options.

TSConfig Reference

To learn more about the hundreds of configuration options in the TSConfig Reference.

Schema

The tsconfig.json Schema can be found at JSON Schema Store.

Help us improve these pages by sending a Pull Request.

Contributors to this page:

OT, LG, JB, L☺, AG, 4+

Last updated: Jun 30, 2025

33

https://github.com/tsconfig/bases
https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/tsconfig
https://json.schemastore.org/tsconfig
https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/project-config/tsconfig.json.md

What is a tsconfig.json

Overview

The presence of a tsconfig.json file in a directory indicates that the directory is the root of a TypeScript

project. The tsconfig.json file specifies the root files and the compiler options required to compile the

project.

JavaScript projects can use a jsconfig.json file instead, which acts almost the same but has some

JavaScript-related compiler flags enabled by default.

A project is compiled in one of the following ways:

By invoking tsc with no input files, in which case the compiler searches for the tsconfig.json

file starting in the current directory and continuing up the parent directory chain.

By invoking tsc with no input files and a --project (or just -p) command line option that

specifies the path of a directory containing a tsconfig.json file, or a path to a valid .json file

containing the configurations.

When input files are specified on the command line, tsconfig.json files are ignored.

Examples

Using the files property

{

 "compilerOptions": {

 "module": "commonjs",

 "noImplicitAny": true,

 "removeComments": true,

 "preserveConstEnums": true,

 "sourceMap": true

 },

 "files": [

 "core.ts",

 "sys.ts",

 "types.ts",

 "scanner.ts",

 "parser.ts",

 "utilities.ts",

 "binder.ts",

 "checker.ts",

 "emitter.ts",

 "program.ts",

 "commandLineParser.ts",

 "tsc.ts",

 "diagnosticInformationMap.generated.ts"

]

}

Using the include and exclude properties

34

{

 "compilerOptions": {

 "module": "system",

 "noImplicitAny": true,

 "removeComments": true,

 "preserveConstEnums": true,

 "outFile": "../../built/local/tsc.js",

 "sourceMap": true

 },

 "include": ["src/**/*"],

 "exclude": ["**/*.spec.ts"]

}

TSConfig Bases

Depending on the JavaScript runtime environment which you intend to run your code in, there may be a base

configuration which you can use at github.com/tsconfig/bases. These are tsconfig.json files which your

project extends from which simplifies your tsconfig.json by handling the runtime support.

For example, if you were writing a project which uses Node.js version 12 and above, then you could use the

npm module @tsconfig/node12:

{

 "extends": "@tsconfig/node12/tsconfig.json",

 "compilerOptions": {

 "preserveConstEnums": true

 },

 "include": ["src/**/*"],

 "exclude": ["**/*.spec.ts"]

}

This lets your tsconfig.json focus on the unique choices for your project, and not all of the runtime

mechanics.

Details

The "compilerOptions" property can be omitted, in which case the compiler s̓ defaults are used. See the

full list of supported Compiler Options.

TSConfig Reference

To learn more about the hundreds of configuration options in the TSConfig Reference.

Schema

The tsconfig.json Schema can be found at the JSON Schema Store.

Help improve these pages by sending a Pull Request on GitHub.

Contributors to this page: OT, LG, JB, L☺, AG, 4+

Last updated: Jun 30, 2025

35

https://github.com/tsconfig/bases/
https://www.npmjs.com/package/@tsconfig/node12
https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/tsconfig
https://json.schemastore.org/tsconfig
https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/project-config/tsconfig.json.md

TypeScript: Handbook - Generics

This page has been deprecated

This handbook page has been replaced, go to the new page

Go to new page

Generics
A major part of software engineering is building components that not only have well-defined and

consistent APIs, but are also reusable.

Components capable of working on current and future data provide the most flexible capabilities

for building large systems.

In languages like C# and Java, generics are a key tool for creating reusable components—allowing components

to operate over a variety of types rather than a single one.

This enables users to consume these components and use their own types.

Hello World of Generics

The simplest example is the identity function, which returns whatever is passed in—similar to the echo

command.

Without generics, you might define the identity function with a specific type:

function identity(arg: number): number {

 return arg;

}

Or, using any for complete generality:

function identity(arg: any): any {

 return arg;

}

However, any loses type information after the function returns.

To preserve type information, use a type variable:

function identity<T>(arg: T): T {

 return arg;

}

This <T> captures the type of the argument, enabling type-safe operations and preserving precise type info

throughout.

Calling the generic identity function

Explicitly specifying the type:

let output = identity<string>("myString");

Or, allowing TypeScript to infer the type:

36

https://www.typescriptlang.org/docs/handbook/2/generics.html
https://www.typescriptlang.org/docs/handbook/2/generics.html

let output = identity("myString");

Working with Generic Type Variables

When creating generic functions like identity , TypeScript enforces correct usage of parameters:

function identity<T>(arg: T): T {

 return arg;

}

If you try to access properties not guaranteed by the type variable, TypeScript warns.

For example, adding .length :

function loggingIdentity<T>(arg: T): T {

 console.log(arg.length); // Error: 'length' does not exist on type 'T'

 return arg;

}

To fix this, constrain T to types that have .length , e.g., arrays:

function loggingIdentity<T>(arg: T[]): T[] {

 console.log(arg.length);

 return arg;

}

Or, by creating an interface:

interface Lengthwise {

 length: number;

}

function loggingIdentity<T extends Lengthwise>(arg: T): T {

 console.log(arg.length);

 return arg;

}

Using Type Parameters in Generic Constraints

Suppose you want to get a property K from object T , ensuring K is a key of T :

function getProperty<T, K extends keyof T>(obj: T, key: K) {

 return obj[key];

}

This enforces that key is one of the valid keys of obj .

Using Class Types in Generics

To create instances of classes dynamically:

function create<T>(c: { new (): T }): T {

 return new c();

}

For example:

37

class BeeKeeper {

 hasMask: boolean;

}

class ZooKeeper {

 nametag: string;

}

class Animal {

 numLegs: number;

}

class Bee extends Animal {

 keeper: BeeKeeper;

}

class Lion extends Animal {

 keeper: ZooKeeper;

}

function createInstance<A extends Animal>(c: { new (): A }): A {

 return new c();

}

createInstance(Lion).keeper.nametag;

createInstance(Bee).keeper.hasMask;

Remarks

Generics enhance code reusability and type safety.

Constraints (extends) enable defining bounds for type parameters.

Class types can be used with generics, but static side members are not generic.

Properly using type parameters helps prevent runtime errors due to incorrect assumptions about types.

Feedback

The TypeScript docs are open source. Help improve these pages by sending a Pull Request.

Last updated: Jun 30, 2025

38

https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/handbook-v1/Generics.md

404
File not found

The site configured at this address does not contain the requested file.

If this is your site, make sure that the filename case matches the URL as well as any file permissions.

For root URLs (like http://example.com/) you must provide an index.html file.

Read the full documentation for more information about using GitHub Pages.

GitHub Status — @githubstatus

39

https://help.github.com/pages/
https://githubstatus.com/
https://twitter.com/githubstatus

Hello

Hello

Hello

Hello

Hello

Hello

Hello

console.log("Hello")

Hello

Hello

Hello

World

1. Hello

2. World

Hello World

console.log("Hello")

TypeScript: Documentation - Gulp

Note: The content primarily consists of a comprehensive tutorial and documentation on using Gulp with

TypeScript, including setup steps, build pipelines, module handling, Browserify, Babel, Terser, and Watchify.

The above is a converted Markdown translation of that content.

40

https://example.com/

